{"title":"基于脑电图的脑机接口数据驱动频段选择","authors":"Heung-Il Suk, Seong-Whan Lee","doi":"10.1109/PRNI.2011.19","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel method of frequency bands selection based on the analysis of a channel-frequency map, which we call 'channel-frequency map'. The spatial filtering, feature extraction, and classification processes are operated in each frequency band in parallel. We determine a class label for an input EEG based on the outputs from the multi-streams with a two-step decision strategy at the end. From our experiments on a public dataset of BCI Competition IV (2008) II-a that includes four motor imagery tasks from 9 subjects, the proposed algorithm outperformed the Common Spatial Pattern (CSP) algorithm and a filter bank CSP algorithm on average in terms of a session-to-session transfer rate using one session for training and the other session for test. A considerable increase of classification accuracy has been achieved for certain subjects. We also would like to note that the proposed data-driven frequency bands selection method is applicable to other single-trial EEG classification that is based on modulations of brain rhythms.","PeriodicalId":196419,"journal":{"name":"2011 International Workshop on Pattern Recognition in NeuroImaging","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Data-Driven Frequency Bands Selection in EEG-Based Brain-Computer Interface\",\"authors\":\"Heung-Il Suk, Seong-Whan Lee\",\"doi\":\"10.1109/PRNI.2011.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel method of frequency bands selection based on the analysis of a channel-frequency map, which we call 'channel-frequency map'. The spatial filtering, feature extraction, and classification processes are operated in each frequency band in parallel. We determine a class label for an input EEG based on the outputs from the multi-streams with a two-step decision strategy at the end. From our experiments on a public dataset of BCI Competition IV (2008) II-a that includes four motor imagery tasks from 9 subjects, the proposed algorithm outperformed the Common Spatial Pattern (CSP) algorithm and a filter bank CSP algorithm on average in terms of a session-to-session transfer rate using one session for training and the other session for test. A considerable increase of classification accuracy has been achieved for certain subjects. We also would like to note that the proposed data-driven frequency bands selection method is applicable to other single-trial EEG classification that is based on modulations of brain rhythms.\",\"PeriodicalId\":196419,\"journal\":{\"name\":\"2011 International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PRNI.2011.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2011.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Data-Driven Frequency Bands Selection in EEG-Based Brain-Computer Interface
In this paper, we propose a novel method of frequency bands selection based on the analysis of a channel-frequency map, which we call 'channel-frequency map'. The spatial filtering, feature extraction, and classification processes are operated in each frequency band in parallel. We determine a class label for an input EEG based on the outputs from the multi-streams with a two-step decision strategy at the end. From our experiments on a public dataset of BCI Competition IV (2008) II-a that includes four motor imagery tasks from 9 subjects, the proposed algorithm outperformed the Common Spatial Pattern (CSP) algorithm and a filter bank CSP algorithm on average in terms of a session-to-session transfer rate using one session for training and the other session for test. A considerable increase of classification accuracy has been achieved for certain subjects. We also would like to note that the proposed data-driven frequency bands selection method is applicable to other single-trial EEG classification that is based on modulations of brain rhythms.