应变局部化的数学分析

M. Jirásek
{"title":"应变局部化的数学分析","authors":"M. Jirásek","doi":"10.1080/17747120.2007.9692973","DOIUrl":null,"url":null,"abstract":"ABSTRACT First it is shown by a simple one-dimensional example that stress-strain laws with softening cannot provide an objective description of response on the structural level. The phenomenon of discontinuous bifurcation from a uniform state is then analyzed in a general threedimensional setting. Localization conditions for isotropic damage models are derived in the general form and then specialized for models with damage driven by equivalent strain dependent on the stored elastic energy, on the maximum principal effective stress, or on the positive part of the strain tensor.","PeriodicalId":368904,"journal":{"name":"Revue Européenne de Génie Civil","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"49","resultStr":"{\"title\":\"Mathematical analysis of strain localization\",\"authors\":\"M. Jirásek\",\"doi\":\"10.1080/17747120.2007.9692973\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT First it is shown by a simple one-dimensional example that stress-strain laws with softening cannot provide an objective description of response on the structural level. The phenomenon of discontinuous bifurcation from a uniform state is then analyzed in a general threedimensional setting. Localization conditions for isotropic damage models are derived in the general form and then specialized for models with damage driven by equivalent strain dependent on the stored elastic energy, on the maximum principal effective stress, or on the positive part of the strain tensor.\",\"PeriodicalId\":368904,\"journal\":{\"name\":\"Revue Européenne de Génie Civil\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"49\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Revue Européenne de Génie Civil\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/17747120.2007.9692973\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revue Européenne de Génie Civil","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17747120.2007.9692973","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 49

摘要

首先通过一个简单的一维算例表明,含软化的应力-应变规律不能客观地描述结构层面的响应。然后在一般的三维环境中分析了均匀状态下的不连续分叉现象。首先推导了各向同性损伤模型的局部化条件,然后将其专门用于等效应变驱动的损伤模型,该模型依赖于存储弹性能、最大主有效应力或应变张量的正部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical analysis of strain localization
ABSTRACT First it is shown by a simple one-dimensional example that stress-strain laws with softening cannot provide an objective description of response on the structural level. The phenomenon of discontinuous bifurcation from a uniform state is then analyzed in a general threedimensional setting. Localization conditions for isotropic damage models are derived in the general form and then specialized for models with damage driven by equivalent strain dependent on the stored elastic energy, on the maximum principal effective stress, or on the positive part of the strain tensor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信