{"title":"利用分类技术评价特征提取技术的性能","authors":"Harshit Mittal","doi":"10.5121/csit.2023.131402","DOIUrl":null,"url":null,"abstract":"Dimensionality reduction techniques are widely used in machine learning to reduce the computational complexity of the model and improve its performance by identifying the most relevant features. In this research paper, we compare various dimensionality reduction techniques, including Principal Component Analysis(PCA), Independent Component Analysis(ICA), Local Linear Embedding(LLE), Local Binary Patterns(LBP), and Simple Autoencoder, on the Olivetti dataset, which is a popular benchmark dataset in the field of face recognition. We evaluate the performance of these dimensionality reduction techniques using various classification algorithms, including Support Vector Classifier (SVC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The goal of this research is to determine which combination of dimensionality reduction technique and classification algorithm is the most effective for the Olivetti dataset. Our research provides insights into the performance of various dimensionality reduction techniques and classification algorithms on the Olivetti dataset. These results can be useful in improving the performance of face recognition systems and other applications that deal with high-dimensional data.","PeriodicalId":430291,"journal":{"name":"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluating The Performance of Feature Extraction Techniques Using Classification Techniques\",\"authors\":\"Harshit Mittal\",\"doi\":\"10.5121/csit.2023.131402\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dimensionality reduction techniques are widely used in machine learning to reduce the computational complexity of the model and improve its performance by identifying the most relevant features. In this research paper, we compare various dimensionality reduction techniques, including Principal Component Analysis(PCA), Independent Component Analysis(ICA), Local Linear Embedding(LLE), Local Binary Patterns(LBP), and Simple Autoencoder, on the Olivetti dataset, which is a popular benchmark dataset in the field of face recognition. We evaluate the performance of these dimensionality reduction techniques using various classification algorithms, including Support Vector Classifier (SVC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The goal of this research is to determine which combination of dimensionality reduction technique and classification algorithm is the most effective for the Olivetti dataset. Our research provides insights into the performance of various dimensionality reduction techniques and classification algorithms on the Olivetti dataset. These results can be useful in improving the performance of face recognition systems and other applications that deal with high-dimensional data.\",\"PeriodicalId\":430291,\"journal\":{\"name\":\"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/csit.2023.131402\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence, NLP , Data Science and Cloud Computing Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/csit.2023.131402","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Evaluating The Performance of Feature Extraction Techniques Using Classification Techniques
Dimensionality reduction techniques are widely used in machine learning to reduce the computational complexity of the model and improve its performance by identifying the most relevant features. In this research paper, we compare various dimensionality reduction techniques, including Principal Component Analysis(PCA), Independent Component Analysis(ICA), Local Linear Embedding(LLE), Local Binary Patterns(LBP), and Simple Autoencoder, on the Olivetti dataset, which is a popular benchmark dataset in the field of face recognition. We evaluate the performance of these dimensionality reduction techniques using various classification algorithms, including Support Vector Classifier (SVC), Linear Discriminant Analysis (LDA), Logistic Regression (LR), K-Nearest Neighbors (KNN), and Support Vector Machine (SVM). The goal of this research is to determine which combination of dimensionality reduction technique and classification algorithm is the most effective for the Olivetti dataset. Our research provides insights into the performance of various dimensionality reduction techniques and classification algorithms on the Olivetti dataset. These results can be useful in improving the performance of face recognition systems and other applications that deal with high-dimensional data.