数据驱动的材料属性知识提取

J. Kandola, S. Gunn, I. Sinclair, Philippa A. Reed
{"title":"数据驱动的材料属性知识提取","authors":"J. Kandola, S. Gunn, I. Sinclair, Philippa A. Reed","doi":"10.1109/IPMM.1999.792507","DOIUrl":null,"url":null,"abstract":"The problem of modelling a large commercial materials dataset using advanced adaptive numeric methods is described. The various approaches are outlined, emphasising their characteristics with respect to generalisation, performance and transparency. A highly novel support vector machine (SVM) approach is taken incorporating a high degree of transparency via a full analysis of variance (ANOVA) expansion. Using an example which predicts 0.2% proof stress from a set of materials features, different modelling techniques are compared by benchmarking against independent test data.","PeriodicalId":194215,"journal":{"name":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","volume":"149 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Data driven knowledge extraction of materials properties\",\"authors\":\"J. Kandola, S. Gunn, I. Sinclair, Philippa A. Reed\",\"doi\":\"10.1109/IPMM.1999.792507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The problem of modelling a large commercial materials dataset using advanced adaptive numeric methods is described. The various approaches are outlined, emphasising their characteristics with respect to generalisation, performance and transparency. A highly novel support vector machine (SVM) approach is taken incorporating a high degree of transparency via a full analysis of variance (ANOVA) expansion. Using an example which predicts 0.2% proof stress from a set of materials features, different modelling techniques are compared by benchmarking against independent test data.\",\"PeriodicalId\":194215,\"journal\":{\"name\":\"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)\",\"volume\":\"149 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPMM.1999.792507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Second International Conference on Intelligent Processing and Manufacturing of Materials. IPMM'99 (Cat. No.99EX296)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPMM.1999.792507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

描述了使用先进的自适应数值方法对大型商业材料数据集进行建模的问题。概述了各种方法,强调了它们在概括性、性能和透明度方面的特点。采用一种高度新颖的支持向量机(SVM)方法,通过全面的方差分析(ANOVA)扩展,结合了高度的透明度。使用一个从一组材料特征预测0.2%抗应力的例子,通过对独立测试数据进行基准测试,比较了不同的建模技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data driven knowledge extraction of materials properties
The problem of modelling a large commercial materials dataset using advanced adaptive numeric methods is described. The various approaches are outlined, emphasising their characteristics with respect to generalisation, performance and transparency. A highly novel support vector machine (SVM) approach is taken incorporating a high degree of transparency via a full analysis of variance (ANOVA) expansion. Using an example which predicts 0.2% proof stress from a set of materials features, different modelling techniques are compared by benchmarking against independent test data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信