基于深度学习和目标检测的甘蔗坯料密度沟槽映射

J. Scott, Andrew Busch
{"title":"基于深度学习和目标检测的甘蔗坯料密度沟槽映射","authors":"J. Scott, Andrew Busch","doi":"10.1109/DICTA51227.2020.9363394","DOIUrl":null,"url":null,"abstract":"Australia's sugar industry is currently undergoing significant hardships, due to global market contractions from COVID-19, increased crop forecasts from larger global producers, and falling oil prices. Current planting practices utilize inefficient mass-flow planting techniques, and no attempt to map the seed using machine vision has been made, to date, in order to understand the underlying problems. This paper investigates the plausibility of creating a labeled sugarcane billet dataset using a readily-available camera positioned beneath a planter and analysing this using a YOLOv3 network. This network resulted in a high mean average precision at intersect over union of 0.5 (mAP50) of 0.852 on test images, and was used to provide planting metrics by generating a furrow map.","PeriodicalId":348164,"journal":{"name":"2020 Digital Image Computing: Techniques and Applications (DICTA)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Furrow Mapping of Sugarcane Billet Density Using Deep Learning and Object Detection\",\"authors\":\"J. Scott, Andrew Busch\",\"doi\":\"10.1109/DICTA51227.2020.9363394\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Australia's sugar industry is currently undergoing significant hardships, due to global market contractions from COVID-19, increased crop forecasts from larger global producers, and falling oil prices. Current planting practices utilize inefficient mass-flow planting techniques, and no attempt to map the seed using machine vision has been made, to date, in order to understand the underlying problems. This paper investigates the plausibility of creating a labeled sugarcane billet dataset using a readily-available camera positioned beneath a planter and analysing this using a YOLOv3 network. This network resulted in a high mean average precision at intersect over union of 0.5 (mAP50) of 0.852 on test images, and was used to provide planting metrics by generating a furrow map.\",\"PeriodicalId\":348164,\"journal\":{\"name\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA51227.2020.9363394\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA51227.2020.9363394","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

由于全球市场因新冠肺炎疫情而萎缩,全球大型生产商的产量预测上调,以及油价下跌,澳大利亚的制糖业目前正面临重大困难。目前的种植实践利用低效的大流量种植技术,并且迄今为止还没有尝试使用机器视觉来绘制种子,以了解潜在的问题。本文研究了使用放置在种植机下方的现成摄像机创建标记甘蔗坯数据集的可行性,并使用YOLOv3网络对其进行分析。该网络在测试图像上获得了0.5 (mAP50) 0.852的高平均相交精度,并通过生成沟图来提供种植指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Furrow Mapping of Sugarcane Billet Density Using Deep Learning and Object Detection
Australia's sugar industry is currently undergoing significant hardships, due to global market contractions from COVID-19, increased crop forecasts from larger global producers, and falling oil prices. Current planting practices utilize inefficient mass-flow planting techniques, and no attempt to map the seed using machine vision has been made, to date, in order to understand the underlying problems. This paper investigates the plausibility of creating a labeled sugarcane billet dataset using a readily-available camera positioned beneath a planter and analysing this using a YOLOv3 network. This network resulted in a high mean average precision at intersect over union of 0.5 (mAP50) of 0.852 on test images, and was used to provide planting metrics by generating a furrow map.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信