用机器学习原理建模贝叶斯定理的量子力学

H. Nieto-Chaupis
{"title":"用机器学习原理建模贝叶斯定理的量子力学","authors":"H. Nieto-Chaupis","doi":"10.1109/SNPD54884.2022.10051776","DOIUrl":null,"url":null,"abstract":"A theory consisting in quantum mechanics and theorem of Bayes, is presented. In essence, the Bayes probability has been built from two subspaces. While in one some quantum measurements are done, in the another it is seen that the probabilities acquire their highest values. Thus, the validity of a prior probability makes sense is there is a clear difference between the done measurement of probability amplitude. Thus, the principles of machine learning compacted in the criteria of Tom Mitchell have been employed. The simulations have shown that the size of space has direct impact on the prior probability that presumably would get low values of probability in a limited subspace. These values have turned out to be strongly correlated to the times in which measurements are done in a big space. Therefore, it is evident the prospective applicability of this novel approach in all those scenarios that require of a quantum measurement in separated times.","PeriodicalId":425462,"journal":{"name":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","volume":"34 Suppl 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Mechanics of Theorem of Bayes Modeled by Machine Learning Principles\",\"authors\":\"H. Nieto-Chaupis\",\"doi\":\"10.1109/SNPD54884.2022.10051776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theory consisting in quantum mechanics and theorem of Bayes, is presented. In essence, the Bayes probability has been built from two subspaces. While in one some quantum measurements are done, in the another it is seen that the probabilities acquire their highest values. Thus, the validity of a prior probability makes sense is there is a clear difference between the done measurement of probability amplitude. Thus, the principles of machine learning compacted in the criteria of Tom Mitchell have been employed. The simulations have shown that the size of space has direct impact on the prior probability that presumably would get low values of probability in a limited subspace. These values have turned out to be strongly correlated to the times in which measurements are done in a big space. Therefore, it is evident the prospective applicability of this novel approach in all those scenarios that require of a quantum measurement in separated times.\",\"PeriodicalId\":425462,\"journal\":{\"name\":\"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"volume\":\"34 Suppl 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SNPD54884.2022.10051776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACIS 23rd International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SNPD54884.2022.10051776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一个由量子力学和贝叶斯定理组成的理论。本质上,贝叶斯概率是由两个子空间建立起来的。虽然在一种情况下进行了一些量子测量,但在另一种情况下,可以看到概率获得了最高的值。因此,先验概率的有效性是有意义的,因为在概率振幅的测量之间存在明显的差异。因此,机器学习的原则在汤姆·米切尔的标准中得到了压缩。仿真结果表明,空间的大小对先验概率有直接的影响,在有限的子空间中可能得到较低的概率值。事实证明,这些值与在大空间内进行测量的时间密切相关。因此,很明显,这种新方法在所有需要在不同时间进行量子测量的情况下都具有前瞻性的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Mechanics of Theorem of Bayes Modeled by Machine Learning Principles
A theory consisting in quantum mechanics and theorem of Bayes, is presented. In essence, the Bayes probability has been built from two subspaces. While in one some quantum measurements are done, in the another it is seen that the probabilities acquire their highest values. Thus, the validity of a prior probability makes sense is there is a clear difference between the done measurement of probability amplitude. Thus, the principles of machine learning compacted in the criteria of Tom Mitchell have been employed. The simulations have shown that the size of space has direct impact on the prior probability that presumably would get low values of probability in a limited subspace. These values have turned out to be strongly correlated to the times in which measurements are done in a big space. Therefore, it is evident the prospective applicability of this novel approach in all those scenarios that require of a quantum measurement in separated times.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信