{"title":"基于FPGA的智能电机驱动的软硬件协同设计","authors":"Benzekri Azzouz, Belaidi Hadjira","doi":"10.1109/IHSH51661.2021.9378712","DOIUrl":null,"url":null,"abstract":"The paper aims to address the design, simulation and implementation processes of a fuzzy logic controller to regulate in real-time the speed of an armature-controlled DC motor using hardware/software codesign methodology. A fuzzy logic control law and a digital pulse width modulation (DPWM) technique are used as a computational solution, while the implementation is carried on a reconfigurable computing hardware platform. The computationally intensive tasks are implemented as custom hardware accelerators using VHDL, while data flow and data control are implemented in software using the system-on-programmable-chip (SoPC) approach. Computer simulation results show the effectiveness and merit of this design flow. In addition, the real-time applicability of this heterogeneous controller is exemplified on an armature-controlled DC motor platform.","PeriodicalId":127735,"journal":{"name":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","volume":"125 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Hardware/Software Codesign for Intelligent Motor Drive on an FPGA\",\"authors\":\"Benzekri Azzouz, Belaidi Hadjira\",\"doi\":\"10.1109/IHSH51661.2021.9378712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper aims to address the design, simulation and implementation processes of a fuzzy logic controller to regulate in real-time the speed of an armature-controlled DC motor using hardware/software codesign methodology. A fuzzy logic control law and a digital pulse width modulation (DPWM) technique are used as a computational solution, while the implementation is carried on a reconfigurable computing hardware platform. The computationally intensive tasks are implemented as custom hardware accelerators using VHDL, while data flow and data control are implemented in software using the system-on-programmable-chip (SoPC) approach. Computer simulation results show the effectiveness and merit of this design flow. In addition, the real-time applicability of this heterogeneous controller is exemplified on an armature-controlled DC motor platform.\",\"PeriodicalId\":127735,\"journal\":{\"name\":\"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)\",\"volume\":\"125 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IHSH51661.2021.9378712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 2nd International Workshop on Human-Centric Smart Environments for Health and Well-being (IHSH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IHSH51661.2021.9378712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hardware/Software Codesign for Intelligent Motor Drive on an FPGA
The paper aims to address the design, simulation and implementation processes of a fuzzy logic controller to regulate in real-time the speed of an armature-controlled DC motor using hardware/software codesign methodology. A fuzzy logic control law and a digital pulse width modulation (DPWM) technique are used as a computational solution, while the implementation is carried on a reconfigurable computing hardware platform. The computationally intensive tasks are implemented as custom hardware accelerators using VHDL, while data flow and data control are implemented in software using the system-on-programmable-chip (SoPC) approach. Computer simulation results show the effectiveness and merit of this design flow. In addition, the real-time applicability of this heterogeneous controller is exemplified on an armature-controlled DC motor platform.