深度多模态卫星与原位观测融合反演土壤水分

Grigorios Tsagkatakis, M. Moghaddam, P. Tsakalides
{"title":"深度多模态卫星与原位观测融合反演土壤水分","authors":"Grigorios Tsagkatakis, M. Moghaddam, P. Tsakalides","doi":"10.1109/IGARSS47720.2021.9553848","DOIUrl":null,"url":null,"abstract":"This work focuses on the problem of surface soil moisture estimation from multi-modal remote sensing observations. We focus on the scenario where both passive radiometer observations from NASA SMAP satellite, as well as active radar measurements from ESA Sentinel 1 are available. We formulate the problem as multi-source observation fusion and develop a deep learning model for SM estimation. To train and validate the performance of the proposed scheme, we consider observations from in-situ SM sensor networks over the continental USA. Experimental results demonstrate that the proposed model achieves high quality SM estimation, surpassing the performance of available products.","PeriodicalId":315312,"journal":{"name":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Deep multi-modal satellite and in-situ observation fusion for Soil Moisture retrieval\",\"authors\":\"Grigorios Tsagkatakis, M. Moghaddam, P. Tsakalides\",\"doi\":\"10.1109/IGARSS47720.2021.9553848\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work focuses on the problem of surface soil moisture estimation from multi-modal remote sensing observations. We focus on the scenario where both passive radiometer observations from NASA SMAP satellite, as well as active radar measurements from ESA Sentinel 1 are available. We formulate the problem as multi-source observation fusion and develop a deep learning model for SM estimation. To train and validate the performance of the proposed scheme, we consider observations from in-situ SM sensor networks over the continental USA. Experimental results demonstrate that the proposed model achieves high quality SM estimation, surpassing the performance of available products.\",\"PeriodicalId\":315312,\"journal\":{\"name\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS47720.2021.9553848\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS47720.2021.9553848","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文主要研究了基于多模态遥感观测的地表土壤水分估算问题。我们的重点是在NASA SMAP卫星的被动辐射计观测和ESA Sentinel 1的主动雷达测量都可用的情况下。我们将该问题表述为多源观测融合,并开发了一种用于SM估计的深度学习模型。为了训练和验证所提出方案的性能,我们考虑了美国大陆上原位SM传感器网络的观测结果。实验结果表明,该模型达到了高质量的SM估计,优于现有产品的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep multi-modal satellite and in-situ observation fusion for Soil Moisture retrieval
This work focuses on the problem of surface soil moisture estimation from multi-modal remote sensing observations. We focus on the scenario where both passive radiometer observations from NASA SMAP satellite, as well as active radar measurements from ESA Sentinel 1 are available. We formulate the problem as multi-source observation fusion and develop a deep learning model for SM estimation. To train and validate the performance of the proposed scheme, we consider observations from in-situ SM sensor networks over the continental USA. Experimental results demonstrate that the proposed model achieves high quality SM estimation, surpassing the performance of available products.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信