复杂生物系统的无监督计算机建模

John Kalantari
{"title":"复杂生物系统的无监督计算机建模","authors":"John Kalantari","doi":"10.1109/FAS-W.2016.69","DOIUrl":null,"url":null,"abstract":"The advent of high-throughput technologies and the resultant generation of data has increased the demand for data-driven analytics. However, a comprehensive and computationally efficient method for analyzing, understanding and managing the emergent behavior of complex biological systems using time-series data remains elusive. In this paper, we introduce a new computational framework and modeling formalism designed for unsupervised learning and model construction in high-throughput biological data applications. This framework uses an underlying Bayesian nonparametric model which effectively infers long-range temporal dependencies from heterogeneous data streams to produce grammatical rules used for real-time in-silico modeling, behavior recognition and prediction. We present initial results of unsupervised learning tasks using unlabeled live-cell imaging data from experiments performed on the Large Scale Digital Cell Analysis System (LSDCAS), namely cellular event classification and large-scale spatio-temporal behavior recognition.","PeriodicalId":382778,"journal":{"name":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","volume":"315 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Unsupervised In-Silico Modeling of Complex Biological Systems\",\"authors\":\"John Kalantari\",\"doi\":\"10.1109/FAS-W.2016.69\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The advent of high-throughput technologies and the resultant generation of data has increased the demand for data-driven analytics. However, a comprehensive and computationally efficient method for analyzing, understanding and managing the emergent behavior of complex biological systems using time-series data remains elusive. In this paper, we introduce a new computational framework and modeling formalism designed for unsupervised learning and model construction in high-throughput biological data applications. This framework uses an underlying Bayesian nonparametric model which effectively infers long-range temporal dependencies from heterogeneous data streams to produce grammatical rules used for real-time in-silico modeling, behavior recognition and prediction. We present initial results of unsupervised learning tasks using unlabeled live-cell imaging data from experiments performed on the Large Scale Digital Cell Analysis System (LSDCAS), namely cellular event classification and large-scale spatio-temporal behavior recognition.\",\"PeriodicalId\":382778,\"journal\":{\"name\":\"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"volume\":\"315 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FAS-W.2016.69\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 1st International Workshops on Foundations and Applications of Self* Systems (FAS*W)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FAS-W.2016.69","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

高通量技术的出现和由此产生的数据增加了对数据驱动分析的需求。然而,使用时间序列数据来分析、理解和管理复杂生物系统的紧急行为的综合和计算效率方法仍然难以捉摸。本文介绍了一种新的计算框架和建模形式,用于高通量生物数据应用中的无监督学习和模型构建。该框架使用底层贝叶斯非参数模型,该模型有效地从异构数据流中推断出远程时间依赖性,从而产生用于实时计算机建模、行为识别和预测的语法规则。我们介绍了在大规模数字细胞分析系统(LSDCAS)上进行的实验中使用未标记活细胞成像数据的无监督学习任务的初步结果,即细胞事件分类和大规模时空行为识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised In-Silico Modeling of Complex Biological Systems
The advent of high-throughput technologies and the resultant generation of data has increased the demand for data-driven analytics. However, a comprehensive and computationally efficient method for analyzing, understanding and managing the emergent behavior of complex biological systems using time-series data remains elusive. In this paper, we introduce a new computational framework and modeling formalism designed for unsupervised learning and model construction in high-throughput biological data applications. This framework uses an underlying Bayesian nonparametric model which effectively infers long-range temporal dependencies from heterogeneous data streams to produce grammatical rules used for real-time in-silico modeling, behavior recognition and prediction. We present initial results of unsupervised learning tasks using unlabeled live-cell imaging data from experiments performed on the Large Scale Digital Cell Analysis System (LSDCAS), namely cellular event classification and large-scale spatio-temporal behavior recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信