EdgeMask:基于边缘的视频数据共享隐私保护服务

Samira Taghavi, Weisong Shi
{"title":"EdgeMask:基于边缘的视频数据共享隐私保护服务","authors":"Samira Taghavi, Weisong Shi","doi":"10.1109/SEC50012.2020.00056","DOIUrl":null,"url":null,"abstract":"Preserving privacy in image and video data captured from public environments is essential for any research group that leverages, publishes, or shares such data. Although there are several research efforts attempting to resolve the privacy issues, they had quality and efficiency limitations. In this work, we proposed EdgeMask as a privacy preserving service that leverages edge computing and deep learning models to propose a real-time object segmentation approach and analyze the input data using parallel computing and speed up the object removal. Our experimental results indicate that EdgeMask reduces the computational time considerably.","PeriodicalId":375577,"journal":{"name":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"EdgeMask: An Edge-based Privacy Preserving Service for Video Data Sharing\",\"authors\":\"Samira Taghavi, Weisong Shi\",\"doi\":\"10.1109/SEC50012.2020.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Preserving privacy in image and video data captured from public environments is essential for any research group that leverages, publishes, or shares such data. Although there are several research efforts attempting to resolve the privacy issues, they had quality and efficiency limitations. In this work, we proposed EdgeMask as a privacy preserving service that leverages edge computing and deep learning models to propose a real-time object segmentation approach and analyze the input data using parallel computing and speed up the object removal. Our experimental results indicate that EdgeMask reduces the computational time considerably.\",\"PeriodicalId\":375577,\"journal\":{\"name\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/ACM Symposium on Edge Computing (SEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEC50012.2020.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/ACM Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC50012.2020.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

保护从公共环境中捕获的图像和视频数据的隐私对于任何利用、发布或共享此类数据的研究小组来说都是必不可少的。尽管有一些研究努力试图解决隐私问题,但它们在质量和效率上都有限制。在这项工作中,我们提出了EdgeMask作为一种隐私保护服务,它利用边缘计算和深度学习模型提出了一种实时对象分割方法,并使用并行计算分析输入数据并加速对象去除。实验结果表明,EdgeMask大大减少了计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EdgeMask: An Edge-based Privacy Preserving Service for Video Data Sharing
Preserving privacy in image and video data captured from public environments is essential for any research group that leverages, publishes, or shares such data. Although there are several research efforts attempting to resolve the privacy issues, they had quality and efficiency limitations. In this work, we proposed EdgeMask as a privacy preserving service that leverages edge computing and deep learning models to propose a real-time object segmentation approach and analyze the input data using parallel computing and speed up the object removal. Our experimental results indicate that EdgeMask reduces the computational time considerably.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信