奇摄动耦合ODE-PDE系统的稳定性分析

Ying Tang, C. Prieur, A. Girard
{"title":"奇摄动耦合ODE-PDE系统的稳定性分析","authors":"Ying Tang, C. Prieur, A. Girard","doi":"10.1109/CDC.2015.7402936","DOIUrl":null,"url":null,"abstract":"This paper is concerned with a coupled ODE-PDE system with two time scales modeled by a perturbation parameter. Firstly, the perturbation parameter is introduced into the PDE system. We show that the stability of the full system is guaranteed by the stability of the reduced and the boundary-layer subsystems. A numerical simulation on a gas flow transport model is used to illustrate the first result. Secondly, an example is used to show that the full system can be unstable even though both subsystems are stable when the perturbation parameter is introduced into the ODE system.","PeriodicalId":308101,"journal":{"name":"2015 54th IEEE Conference on Decision and Control (CDC)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Stability analysis of a singularly perturbed coupled ODE-PDE system\",\"authors\":\"Ying Tang, C. Prieur, A. Girard\",\"doi\":\"10.1109/CDC.2015.7402936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with a coupled ODE-PDE system with two time scales modeled by a perturbation parameter. Firstly, the perturbation parameter is introduced into the PDE system. We show that the stability of the full system is guaranteed by the stability of the reduced and the boundary-layer subsystems. A numerical simulation on a gas flow transport model is used to illustrate the first result. Secondly, an example is used to show that the full system can be unstable even though both subsystems are stable when the perturbation parameter is introduced into the ODE system.\",\"PeriodicalId\":308101,\"journal\":{\"name\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 54th IEEE Conference on Decision and Control (CDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2015.7402936\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 54th IEEE Conference on Decision and Control (CDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2015.7402936","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

本文研究了一个用微扰参数建模的具有两个时间尺度的ODE-PDE耦合系统。首先,将微扰参数引入PDE系统。我们证明了整个系统的稳定性是由约化子系统和边界层子系统的稳定性保证的。用一个气体流动输运模型的数值模拟来说明第一个结果。其次,通过一个算例说明,当引入扰动参数时,即使两个子系统都是稳定的,整个系统也可能是不稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability analysis of a singularly perturbed coupled ODE-PDE system
This paper is concerned with a coupled ODE-PDE system with two time scales modeled by a perturbation parameter. Firstly, the perturbation parameter is introduced into the PDE system. We show that the stability of the full system is guaranteed by the stability of the reduced and the boundary-layer subsystems. A numerical simulation on a gas flow transport model is used to illustrate the first result. Secondly, an example is used to show that the full system can be unstable even though both subsystems are stable when the perturbation parameter is introduced into the ODE system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信