应用聚类技术提炼大数据集:以恶意软件为例

Yoon Myet Thwe, Mizuhito Ogawa, P. N. Dung
{"title":"应用聚类技术提炼大数据集:以恶意软件为例","authors":"Yoon Myet Thwe, Mizuhito Ogawa, P. N. Dung","doi":"10.1109/AITC.2019.8921088","DOIUrl":null,"url":null,"abstract":"Malware databases have been unintentionally collecting garbage (incomplete malware) together with malware through the Internet. This paper focuses on finding garbage (incomplete malware) from large malware datasets using binary pattern matching and speed up the matching by using nested clustering as a preprocessing. To verify the effectiveness of our method, we conduct experiments on various malware datasets. The results show that our method works efficiently while maintaining high accuracy.","PeriodicalId":388642,"journal":{"name":"2019 International Conference on Advanced Information Technologies (ICAIT)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Applying Clustering Techniques for Refining Large Data Set: Case Study on Malware\",\"authors\":\"Yoon Myet Thwe, Mizuhito Ogawa, P. N. Dung\",\"doi\":\"10.1109/AITC.2019.8921088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Malware databases have been unintentionally collecting garbage (incomplete malware) together with malware through the Internet. This paper focuses on finding garbage (incomplete malware) from large malware datasets using binary pattern matching and speed up the matching by using nested clustering as a preprocessing. To verify the effectiveness of our method, we conduct experiments on various malware datasets. The results show that our method works efficiently while maintaining high accuracy.\",\"PeriodicalId\":388642,\"journal\":{\"name\":\"2019 International Conference on Advanced Information Technologies (ICAIT)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Advanced Information Technologies (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AITC.2019.8921088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Advanced Information Technologies (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AITC.2019.8921088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

恶意软件数据库无意中通过互联网收集垃圾(不完整的恶意软件)和恶意软件。本文主要研究了利用二进制模式匹配从大型恶意软件数据集中发现垃圾(不完整恶意软件),并利用嵌套聚类作为预处理来加快匹配速度。为了验证我们方法的有效性,我们在各种恶意软件数据集上进行了实验。结果表明,该方法在保持较高精度的同时,工作效率高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applying Clustering Techniques for Refining Large Data Set: Case Study on Malware
Malware databases have been unintentionally collecting garbage (incomplete malware) together with malware through the Internet. This paper focuses on finding garbage (incomplete malware) from large malware datasets using binary pattern matching and speed up the matching by using nested clustering as a preprocessing. To verify the effectiveness of our method, we conduct experiments on various malware datasets. The results show that our method works efficiently while maintaining high accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信