{"title":"量子正则系综","authors":"R. Swendsen","doi":"10.1093/ACPROF:OSO/9780199646944.003.0023","DOIUrl":null,"url":null,"abstract":"This chapter introduces the quantum mechanical canonical ensemble, which is used for the majority of problems in quantum statistical mechanics. The ensemble is derived and analogies with the classical ensemble are presented. A useful expression for the quantum entropy is derived. The origin of the Third Law is explained. The relationship between fluctuations and derivatives found in classical statistical mechanics is shown to have counterparts in quantum statistical mechanics. The factorization of the partition function is re-introduced as the best trick in quantum statistical mechanics. Due to their importance in later chapters, basic calculations of the properties of two-level systems and simple harmonic oscillators are derived.","PeriodicalId":102491,"journal":{"name":"An Introduction to Statistical Mechanics and Thermodynamics","volume":"10862 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Canonical Ensemble\",\"authors\":\"R. Swendsen\",\"doi\":\"10.1093/ACPROF:OSO/9780199646944.003.0023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter introduces the quantum mechanical canonical ensemble, which is used for the majority of problems in quantum statistical mechanics. The ensemble is derived and analogies with the classical ensemble are presented. A useful expression for the quantum entropy is derived. The origin of the Third Law is explained. The relationship between fluctuations and derivatives found in classical statistical mechanics is shown to have counterparts in quantum statistical mechanics. The factorization of the partition function is re-introduced as the best trick in quantum statistical mechanics. Due to their importance in later chapters, basic calculations of the properties of two-level systems and simple harmonic oscillators are derived.\",\"PeriodicalId\":102491,\"journal\":{\"name\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"volume\":\"10862 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"An Introduction to Statistical Mechanics and Thermodynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ACPROF:OSO/9780199646944.003.0023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"An Introduction to Statistical Mechanics and Thermodynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ACPROF:OSO/9780199646944.003.0023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This chapter introduces the quantum mechanical canonical ensemble, which is used for the majority of problems in quantum statistical mechanics. The ensemble is derived and analogies with the classical ensemble are presented. A useful expression for the quantum entropy is derived. The origin of the Third Law is explained. The relationship between fluctuations and derivatives found in classical statistical mechanics is shown to have counterparts in quantum statistical mechanics. The factorization of the partition function is re-introduced as the best trick in quantum statistical mechanics. Due to their importance in later chapters, basic calculations of the properties of two-level systems and simple harmonic oscillators are derived.