{"title":"正多边形的结褶:计算机辅助构造与验证","authors":"T. Ida, Fadoua Ghourabi, Kazuko Takahashi","doi":"10.1109/SYNASC.2013.9","DOIUrl":null,"url":null,"abstract":"We present computer-assisted construction of regular polygons by knot paper fold. The construction is completed with an automated proof based on algebraic methods. Given a rectangular origami or a finite tape, both of an adequate length, we can construct the simplest knot by making three folds. The shape of the knot is made to be a regular pentagon if we fasten the tape tightly without destroying the tape. We performed the analysis of the knot fold further formally towards the computer assisted construction and verification. Our study yielded more rigor and in-depth results about the subject.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Knot Fold of Regular Polygons: Computer-Assisted Construction and Verification\",\"authors\":\"T. Ida, Fadoua Ghourabi, Kazuko Takahashi\",\"doi\":\"10.1109/SYNASC.2013.9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present computer-assisted construction of regular polygons by knot paper fold. The construction is completed with an automated proof based on algebraic methods. Given a rectangular origami or a finite tape, both of an adequate length, we can construct the simplest knot by making three folds. The shape of the knot is made to be a regular pentagon if we fasten the tape tightly without destroying the tape. We performed the analysis of the knot fold further formally towards the computer assisted construction and verification. Our study yielded more rigor and in-depth results about the subject.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Knot Fold of Regular Polygons: Computer-Assisted Construction and Verification
We present computer-assisted construction of regular polygons by knot paper fold. The construction is completed with an automated proof based on algebraic methods. Given a rectangular origami or a finite tape, both of an adequate length, we can construct the simplest knot by making three folds. The shape of the knot is made to be a regular pentagon if we fasten the tape tightly without destroying the tape. We performed the analysis of the knot fold further formally towards the computer assisted construction and verification. Our study yielded more rigor and in-depth results about the subject.