脉冲耦合神经网络对图像时间序列的FPGA实现

Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang
{"title":"脉冲耦合神经网络对图像时间序列的FPGA实现","authors":"Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang","doi":"10.1145/3277453.3277483","DOIUrl":null,"url":null,"abstract":"Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.","PeriodicalId":186835,"journal":{"name":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"FPGA Implementation of Pulse Coupled Neural Network on for Time Series of an Image\",\"authors\":\"Xinzhe Zang, Zhenbin Gao, Mengyuan Li, Xia Wang\",\"doi\":\"10.1145/3277453.3277483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.\",\"PeriodicalId\":186835,\"journal\":{\"name\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3277453.3277483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 International Conference on Electronics and Electrical Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3277453.3277483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脉冲耦合神经网络(Pulse Coupled Neural Network, PCNN)是一种受生物学启发的神经网络,在图像分割、增强、识别、边缘检测等图像处理领域有很好的应用。本文提出了一种通用的PCNN VHDL建模方法,既可用于FPGA实现,也可用于ASIC。首先,分析了PCNN的基本理论模型;然后给出了硬件各子模块的详细设计;最后,通过对比同一图像的FPGA仿真和理论计算的时间序列输出,对VHDL模型进行了验证。FPGA硬件实现可以被认为是进一步扩展实现的平台,并且很容易扩展到各种应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
FPGA Implementation of Pulse Coupled Neural Network on for Time Series of an Image
Pulse Coupled Neural Network (PCNN) is biologically inspired neural networks, which has a good application in image processing, such as segmentation, enhancement, recognition, edge detection and so on. This paper presents a general VHDL modeling of PCNN, that is targeted for FPGA implementation, and can also be used with advantage for ASIC. First, the basic PCNN theory model is analyzed; and then the detail designed of each sub-module of the hardware is given; at last, the VHDL model is proved by comparing the time series output from FPGA simulation and that from theoretical calculation of the same image. The FPGA hardware implementation may be considered a platform for further, extended implementations and easily expanded into various applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信