图像处理中最优化计算的线性逼近方法

Tao Chen, Hong Chen
{"title":"图像处理中最优化计算的线性逼近方法","authors":"Tao Chen, Hong Chen","doi":"10.1109/SIMSYM.1992.227560","DOIUrl":null,"url":null,"abstract":"A novel modified linear approximation method (MLAM) is introduced for fast optimal calculation in image processing. The analytical properties of this new algorithm is discussed and its proof of convergence is given. Simulations have been conducted and experimental results show that, in terms of the solution seeking speed, MLAM can perform as much as 60% better than the bisection method, a typical method commonly used.<<ETX>>","PeriodicalId":215380,"journal":{"name":"Proceedings. 25th Annual Simulation Symposium","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A linear approximation method for optimum calculation in image processing\",\"authors\":\"Tao Chen, Hong Chen\",\"doi\":\"10.1109/SIMSYM.1992.227560\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel modified linear approximation method (MLAM) is introduced for fast optimal calculation in image processing. The analytical properties of this new algorithm is discussed and its proof of convergence is given. Simulations have been conducted and experimental results show that, in terms of the solution seeking speed, MLAM can perform as much as 60% better than the bisection method, a typical method commonly used.<<ETX>>\",\"PeriodicalId\":215380,\"journal\":{\"name\":\"Proceedings. 25th Annual Simulation Symposium\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 25th Annual Simulation Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIMSYM.1992.227560\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 25th Annual Simulation Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIMSYM.1992.227560","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种新的改进线性逼近法(MLAM),用于图像处理中的快速优化计算。讨论了该算法的解析性质,并给出了收敛性证明。仿真结果表明,在求解速度方面,MLAM比常用的典型二分法提高了60%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A linear approximation method for optimum calculation in image processing
A novel modified linear approximation method (MLAM) is introduced for fast optimal calculation in image processing. The analytical properties of this new algorithm is discussed and its proof of convergence is given. Simulations have been conducted and experimental results show that, in terms of the solution seeking speed, MLAM can perform as much as 60% better than the bisection method, a typical method commonly used.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信