朝着高层次的、可验证的、具有时间规范的自治行为发展

Ju Wang, Sagar Pandit
{"title":"朝着高层次的、可验证的、具有时间规范的自治行为发展","authors":"Ju Wang, Sagar Pandit","doi":"10.1109/NAECON46414.2019.9058121","DOIUrl":null,"url":null,"abstract":"We present a hybrid agent framework to produce high-level autonomous behavior for unmanned vehicles based on formal specification. High level autonomous behavior is attractive due to minimum level of central control and support for verifiable behavior results such as safety assurance. The proposed framework use linear temporal logic (LTL) to express high level agent behavior to control search, tracking, and survival activities, which are executed at a rule-based reasoning engine. The low level search and team tracking behaviors are implemented by a policy network trained with Reinforcement Learning (RL). The behavior controller is evaluated in a simulated envrionment with single-agent and multi-agent search and tracking scenarios.","PeriodicalId":193529,"journal":{"name":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Towards high-level, verifiable autonomous behaviors with temporal specifications\",\"authors\":\"Ju Wang, Sagar Pandit\",\"doi\":\"10.1109/NAECON46414.2019.9058121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a hybrid agent framework to produce high-level autonomous behavior for unmanned vehicles based on formal specification. High level autonomous behavior is attractive due to minimum level of central control and support for verifiable behavior results such as safety assurance. The proposed framework use linear temporal logic (LTL) to express high level agent behavior to control search, tracking, and survival activities, which are executed at a rule-based reasoning engine. The low level search and team tracking behaviors are implemented by a policy network trained with Reinforcement Learning (RL). The behavior controller is evaluated in a simulated envrionment with single-agent and multi-agent search and tracking scenarios.\",\"PeriodicalId\":193529,\"journal\":{\"name\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE National Aerospace and Electronics Conference (NAECON)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NAECON46414.2019.9058121\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE National Aerospace and Electronics Conference (NAECON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAECON46414.2019.9058121","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于形式化规范的混合智能体框架,用于生成无人驾驶车辆的高级自主行为。高级自治行为由于其最低程度的中央控制和对可验证的行为结果(如安全保证)的支持而具有吸引力。提出的框架使用线性时间逻辑(LTL)来表达高级代理行为,以控制搜索、跟踪和生存活动,这些活动在基于规则的推理引擎中执行。低级搜索和团队跟踪行为由强化学习(RL)训练的策略网络实现。在单智能体和多智能体搜索和跟踪场景的模拟环境中对行为控制器进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards high-level, verifiable autonomous behaviors with temporal specifications
We present a hybrid agent framework to produce high-level autonomous behavior for unmanned vehicles based on formal specification. High level autonomous behavior is attractive due to minimum level of central control and support for verifiable behavior results such as safety assurance. The proposed framework use linear temporal logic (LTL) to express high level agent behavior to control search, tracking, and survival activities, which are executed at a rule-based reasoning engine. The low level search and team tracking behaviors are implemented by a policy network trained with Reinforcement Learning (RL). The behavior controller is evaluated in a simulated envrionment with single-agent and multi-agent search and tracking scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信