Laurie Kirkcaldy, P. Lewin, G. Lees, Rosalie Rogers
{"title":"基于分布式声传感的油压界面局部放电检测","authors":"Laurie Kirkcaldy, P. Lewin, G. Lees, Rosalie Rogers","doi":"10.1109/SAS51076.2021.9530118","DOIUrl":null,"url":null,"abstract":"This paper investigates novel, initial experimentation in detecting and analysing Partial Discharge at the Oil-Pressboard interface using a continuous fibre-optic-based Distributed Acoustic Sensing (DAS) system. Discharge was successfully detected at a minimum of 223 pC despite the sample rate of DAS being lower than the spectra of acoustic emission. DAS presents multiple advantages over conventional Partial Discharge techniques including inherent localisation, immunity to electrical and magnetic noise, as well as much greater detection distances.","PeriodicalId":224327,"journal":{"name":"2021 IEEE Sensors Applications Symposium (SAS)","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Partial Discharge Detection Using Distributed Acoustic Sensing at the Oil-Pressboard Interface\",\"authors\":\"Laurie Kirkcaldy, P. Lewin, G. Lees, Rosalie Rogers\",\"doi\":\"10.1109/SAS51076.2021.9530118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper investigates novel, initial experimentation in detecting and analysing Partial Discharge at the Oil-Pressboard interface using a continuous fibre-optic-based Distributed Acoustic Sensing (DAS) system. Discharge was successfully detected at a minimum of 223 pC despite the sample rate of DAS being lower than the spectra of acoustic emission. DAS presents multiple advantages over conventional Partial Discharge techniques including inherent localisation, immunity to electrical and magnetic noise, as well as much greater detection distances.\",\"PeriodicalId\":224327,\"journal\":{\"name\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"63 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS51076.2021.9530118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS51076.2021.9530118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partial Discharge Detection Using Distributed Acoustic Sensing at the Oil-Pressboard Interface
This paper investigates novel, initial experimentation in detecting and analysing Partial Discharge at the Oil-Pressboard interface using a continuous fibre-optic-based Distributed Acoustic Sensing (DAS) system. Discharge was successfully detected at a minimum of 223 pC despite the sample rate of DAS being lower than the spectra of acoustic emission. DAS presents multiple advantages over conventional Partial Discharge techniques including inherent localisation, immunity to electrical and magnetic noise, as well as much greater detection distances.