一维奇异排斥相互作用中的粒子系统:对数和Riesz气体

A. Guillin, Pierre Le Bris, Pierre Monmarch'e
{"title":"一维奇异排斥相互作用中的粒子系统:对数和Riesz气体","authors":"A. Guillin, Pierre Le Bris, Pierre Monmarch'e","doi":"10.5802/jep.235","DOIUrl":null,"url":null,"abstract":"In this article, we prove the first quantitative uniform in time propagation of chaos for a class of systems of particles in singular repulsive interaction in dimension one that contains the Dyson Brownian motion. We start by establishing existence and uniqueness for the Riesz gases, before proving propagation of chaos with an original approach to the problem, namely coupling with a Cauchy sequence type argument. We also give a general argument to turn a result of weak propagation of chaos into a strong and uniform in time result using the long time behavior and some bounds on moments, in particular enabling us to get a uniform in time version of the result of C\\'epa-L\\'epingle.","PeriodicalId":106406,"journal":{"name":"Journal de l’École polytechnique — Mathématiques","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"On systems of particles in singular repulsive interaction in dimension one: log and Riesz gas\",\"authors\":\"A. Guillin, Pierre Le Bris, Pierre Monmarch'e\",\"doi\":\"10.5802/jep.235\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we prove the first quantitative uniform in time propagation of chaos for a class of systems of particles in singular repulsive interaction in dimension one that contains the Dyson Brownian motion. We start by establishing existence and uniqueness for the Riesz gases, before proving propagation of chaos with an original approach to the problem, namely coupling with a Cauchy sequence type argument. We also give a general argument to turn a result of weak propagation of chaos into a strong and uniform in time result using the long time behavior and some bounds on moments, in particular enabling us to get a uniform in time version of the result of C\\\\'epa-L\\\\'epingle.\",\"PeriodicalId\":106406,\"journal\":{\"name\":\"Journal de l’École polytechnique — Mathématiques\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de l’École polytechnique — Mathématiques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/jep.235\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de l’École polytechnique — Mathématiques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/jep.235","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在本文中,我们证明了一类包含戴森-布朗运动的一维奇异排斥相互作用粒子系统混沌在时间传播中的第一个定量均匀性。我们首先建立了Riesz气体的存在性和唯一性,然后用一种原始的方法证明了混沌的传播,即与柯西序列型参数的耦合。我们还给出了利用长时间行为和一些矩界将混沌的弱传播结果转化为强一致时间结果的一般论证,特别是使我们得到了C\'epa-L\'epingle结果的一致时间版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On systems of particles in singular repulsive interaction in dimension one: log and Riesz gas
In this article, we prove the first quantitative uniform in time propagation of chaos for a class of systems of particles in singular repulsive interaction in dimension one that contains the Dyson Brownian motion. We start by establishing existence and uniqueness for the Riesz gases, before proving propagation of chaos with an original approach to the problem, namely coupling with a Cauchy sequence type argument. We also give a general argument to turn a result of weak propagation of chaos into a strong and uniform in time result using the long time behavior and some bounds on moments, in particular enabling us to get a uniform in time version of the result of C\'epa-L\'epingle.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信