视频凝视预测:最小化感知信息损失

Junyong You
{"title":"视频凝视预测:最小化感知信息损失","authors":"Junyong You","doi":"10.1109/ICME.2012.191","DOIUrl":null,"url":null,"abstract":"Automatic detection of visually interesting regions and gaze points plays an important role in many video applications. Due to limited ability of the human visual system (HVS) when processing visual stimuli at any instant, a natural function of gaze changes is to collect as much information as possible to form an accurate understanding of the visual scene. This paper proposes an automatic gaze prediction algorithm by modeling such function. An improved foveal imaging model is developed by taking visual attention and temporal visual characteristics into account. Gaze changes are predicted based on minimizing perceptual information loss due to the foveated vision mechanism. Experimental results against a video eye-tracking database demonstrate a promising performance of the proposed gaze prediction algorithm.","PeriodicalId":273567,"journal":{"name":"2012 IEEE International Conference on Multimedia and Expo","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Video Gaze Prediction: Minimizing Perceptual Information Loss\",\"authors\":\"Junyong You\",\"doi\":\"10.1109/ICME.2012.191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic detection of visually interesting regions and gaze points plays an important role in many video applications. Due to limited ability of the human visual system (HVS) when processing visual stimuli at any instant, a natural function of gaze changes is to collect as much information as possible to form an accurate understanding of the visual scene. This paper proposes an automatic gaze prediction algorithm by modeling such function. An improved foveal imaging model is developed by taking visual attention and temporal visual characteristics into account. Gaze changes are predicted based on minimizing perceptual information loss due to the foveated vision mechanism. Experimental results against a video eye-tracking database demonstrate a promising performance of the proposed gaze prediction algorithm.\",\"PeriodicalId\":273567,\"journal\":{\"name\":\"2012 IEEE International Conference on Multimedia and Expo\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Multimedia and Expo\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME.2012.191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Multimedia and Expo","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2012.191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

视觉兴趣区域和注视点的自动检测在许多视频应用中起着重要的作用。由于人类视觉系统(HVS)在任何时刻处理视觉刺激的能力有限,目光变化的自然功能是尽可能多地收集信息,以形成对视觉场景的准确理解。本文通过对该函数进行建模,提出了一种自动注视预测算法。通过考虑视觉注意和时间视觉特征,建立了一种改进的中央凹成像模型。注视变化的预测是基于最小化因注视点视觉机制而导致的感知信息损失。针对视频眼动追踪数据库的实验结果表明,该算法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Video Gaze Prediction: Minimizing Perceptual Information Loss
Automatic detection of visually interesting regions and gaze points plays an important role in many video applications. Due to limited ability of the human visual system (HVS) when processing visual stimuli at any instant, a natural function of gaze changes is to collect as much information as possible to form an accurate understanding of the visual scene. This paper proposes an automatic gaze prediction algorithm by modeling such function. An improved foveal imaging model is developed by taking visual attention and temporal visual characteristics into account. Gaze changes are predicted based on minimizing perceptual information loss due to the foveated vision mechanism. Experimental results against a video eye-tracking database demonstrate a promising performance of the proposed gaze prediction algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信