DimScanner:一种基于关系的数据维度检测的视觉探索方法

Jing Xia, Wei Chen, Yumeng Hou, Wanqi Hu, Xinxin Huang, D. Ebert
{"title":"DimScanner:一种基于关系的数据维度检测的视觉探索方法","authors":"Jing Xia, Wei Chen, Yumeng Hou, Wanqi Hu, Xinxin Huang, D. Ebert","doi":"10.1109/VAST.2016.7883514","DOIUrl":null,"url":null,"abstract":"Exploring multi-dimensional datasets can be cumbersome if data analysts have little knowledge about the data. Various dimension relation inspection tools and dimension exploration tools have been proposed for efficient data examining and understanding. However, the needed workload varies largely with respect to data complexity and user expertise, which can only be reduced with rich background knowledge over the data. In this paper we address the workload challenge with a data structuring and exploration scheme that affords dimension relation detection and that serves as the background knowledge for further investigation. We contribute a novel data structuring scheme that leverages an information-theoretic view structuring algorithm to uncover information-aware relations among different data views, and thereby discloses redundancy and other relation patterns among dimensions. The integrated system, DimScanner, empowers analysts with rich user controls and assistance widgets to interactively detect the relations of multi-dimensional data.","PeriodicalId":357817,"journal":{"name":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","volume":"115 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"DimScanner: A relation-based visual exploration approach towards data dimension inspection\",\"authors\":\"Jing Xia, Wei Chen, Yumeng Hou, Wanqi Hu, Xinxin Huang, D. Ebert\",\"doi\":\"10.1109/VAST.2016.7883514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Exploring multi-dimensional datasets can be cumbersome if data analysts have little knowledge about the data. Various dimension relation inspection tools and dimension exploration tools have been proposed for efficient data examining and understanding. However, the needed workload varies largely with respect to data complexity and user expertise, which can only be reduced with rich background knowledge over the data. In this paper we address the workload challenge with a data structuring and exploration scheme that affords dimension relation detection and that serves as the background knowledge for further investigation. We contribute a novel data structuring scheme that leverages an information-theoretic view structuring algorithm to uncover information-aware relations among different data views, and thereby discloses redundancy and other relation patterns among dimensions. The integrated system, DimScanner, empowers analysts with rich user controls and assistance widgets to interactively detect the relations of multi-dimensional data.\",\"PeriodicalId\":357817,\"journal\":{\"name\":\"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"volume\":\"115 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VAST.2016.7883514\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Visual Analytics Science and Technology (VAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VAST.2016.7883514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

如果数据分析师对数据知之甚少,那么探索多维数据集可能会很麻烦。为了有效地检查和理解数据,提出了各种尺寸关系检查工具和尺寸勘探工具。然而,所需的工作负载在很大程度上取决于数据复杂性和用户专业知识,只有通过丰富的数据背景知识才能减少这些工作负载。在本文中,我们通过数据结构和探索方案解决了工作负载挑战,该方案提供了维度关系检测,并作为进一步研究的背景知识。我们提出了一种新的数据结构方案,利用信息论的视图结构算法来揭示不同数据视图之间的信息感知关系,从而揭示维度之间的冗余和其他关系模式。集成系统DimScanner为分析人员提供了丰富的用户控制和辅助部件,以交互式方式检测多维数据之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DimScanner: A relation-based visual exploration approach towards data dimension inspection
Exploring multi-dimensional datasets can be cumbersome if data analysts have little knowledge about the data. Various dimension relation inspection tools and dimension exploration tools have been proposed for efficient data examining and understanding. However, the needed workload varies largely with respect to data complexity and user expertise, which can only be reduced with rich background knowledge over the data. In this paper we address the workload challenge with a data structuring and exploration scheme that affords dimension relation detection and that serves as the background knowledge for further investigation. We contribute a novel data structuring scheme that leverages an information-theoretic view structuring algorithm to uncover information-aware relations among different data views, and thereby discloses redundancy and other relation patterns among dimensions. The integrated system, DimScanner, empowers analysts with rich user controls and assistance widgets to interactively detect the relations of multi-dimensional data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信