NavREn-Rl:通过使用单目图像的端到端深度强化学习,在真实环境中学习飞行

Malik Aqeel Anwar, A. Raychowdhury
{"title":"NavREn-Rl:通过使用单目图像的端到端深度强化学习,在真实环境中学习飞行","authors":"Malik Aqeel Anwar, A. Raychowdhury","doi":"10.1109/M2VIP.2018.8600838","DOIUrl":null,"url":null,"abstract":"We present NavREn-Rl, an approach to NAVigate an unmanned aerial vehicle in an indoor Real ENvironment via end-to-end reinforcement learning (RL). A suitable reward function is designed keeping in mind the cost and weight constraints for micro drone with minimum number of sensing modalities. Collection of small number of expert data and knowledge based data aggregation is integrated into the RL process to aid convergence. Experimentation is carried out on a Parrot AR drone in different indoor arenas and the results are compared with other baseline technologies. We demonstrate how the drone successfully avoids obstacles and navigates across different arenas. Video of the drone navigating using the proposed approach can be seen at https://youtu.be/yOTkTHUPNVY","PeriodicalId":365579,"journal":{"name":"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"NavREn-Rl: Learning to fly in real environment via end-to-end deep reinforcement learning using monocular images\",\"authors\":\"Malik Aqeel Anwar, A. Raychowdhury\",\"doi\":\"10.1109/M2VIP.2018.8600838\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present NavREn-Rl, an approach to NAVigate an unmanned aerial vehicle in an indoor Real ENvironment via end-to-end reinforcement learning (RL). A suitable reward function is designed keeping in mind the cost and weight constraints for micro drone with minimum number of sensing modalities. Collection of small number of expert data and knowledge based data aggregation is integrated into the RL process to aid convergence. Experimentation is carried out on a Parrot AR drone in different indoor arenas and the results are compared with other baseline technologies. We demonstrate how the drone successfully avoids obstacles and navigates across different arenas. Video of the drone navigating using the proposed approach can be seen at https://youtu.be/yOTkTHUPNVY\",\"PeriodicalId\":365579,\"journal\":{\"name\":\"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/M2VIP.2018.8600838\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/M2VIP.2018.8600838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

我们提出了NavREn-Rl,一种通过端到端强化学习(RL)在室内真实环境中导航无人机的方法。考虑到微型无人机的成本和重量限制,设计了一个合适的奖励函数,使其具有最小数量的传感模式。将少量专家数据的收集和基于知识的数据聚合集成到RL过程中,以帮助收敛。在Parrot AR无人机上进行了不同室内环境的实验,并与其他基线技术进行了比较。我们演示了无人机如何成功地避开障碍物并在不同的舞台上导航。使用该方法的无人机导航视频可以在https://youtu.be/yOTkTHUPNVY上看到
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NavREn-Rl: Learning to fly in real environment via end-to-end deep reinforcement learning using monocular images
We present NavREn-Rl, an approach to NAVigate an unmanned aerial vehicle in an indoor Real ENvironment via end-to-end reinforcement learning (RL). A suitable reward function is designed keeping in mind the cost and weight constraints for micro drone with minimum number of sensing modalities. Collection of small number of expert data and knowledge based data aggregation is integrated into the RL process to aid convergence. Experimentation is carried out on a Parrot AR drone in different indoor arenas and the results are compared with other baseline technologies. We demonstrate how the drone successfully avoids obstacles and navigates across different arenas. Video of the drone navigating using the proposed approach can be seen at https://youtu.be/yOTkTHUPNVY
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信