{"title":"基于稀疏传感器的鲁棒低成本动作捕捉系统","authors":"S. Kim, Hanyoung Jang, Jongmin Kim","doi":"10.1145/3415264.3425463","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a robust low-cost mocap system (mocap) with sparse sensors. Although the sensor with an accelerometer, magnetometer, and gyroscope is cost-effective and offers the measured positions and rotations from these devices, it potentially suffers from noise, drift, and lost issues over time. The resulting character obtained from a sensor-based low-cost mocap system is thus generally not satisfactory. We address these issues by using a novel deep learning framework that consists of two networks, a motion estimator and a sensor data generator. When the aforementioned issues occur, the motion estimator feeds the newly synthesized sensor data obtained with the measured and predicted data from the sensor data generator until the issues have been resolved. Otherwise, the motion estimator receives the measured sensor data to accurately and continuously reconstruct the new character poses. In our examples, we show that our system outperforms the previous approach without the sensor data generator and we believe that it can be considered a handy and robust mocap system.","PeriodicalId":372541,"journal":{"name":"SIGGRAPH Asia 2020 Posters","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Low-cost Mocap System with Sparse Sensors\",\"authors\":\"S. Kim, Hanyoung Jang, Jongmin Kim\",\"doi\":\"10.1145/3415264.3425463\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a robust low-cost mocap system (mocap) with sparse sensors. Although the sensor with an accelerometer, magnetometer, and gyroscope is cost-effective and offers the measured positions and rotations from these devices, it potentially suffers from noise, drift, and lost issues over time. The resulting character obtained from a sensor-based low-cost mocap system is thus generally not satisfactory. We address these issues by using a novel deep learning framework that consists of two networks, a motion estimator and a sensor data generator. When the aforementioned issues occur, the motion estimator feeds the newly synthesized sensor data obtained with the measured and predicted data from the sensor data generator until the issues have been resolved. Otherwise, the motion estimator receives the measured sensor data to accurately and continuously reconstruct the new character poses. In our examples, we show that our system outperforms the previous approach without the sensor data generator and we believe that it can be considered a handy and robust mocap system.\",\"PeriodicalId\":372541,\"journal\":{\"name\":\"SIGGRAPH Asia 2020 Posters\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIGGRAPH Asia 2020 Posters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3415264.3425463\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIGGRAPH Asia 2020 Posters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3415264.3425463","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Robust Low-cost Mocap System with Sparse Sensors
In this paper, we propose a robust low-cost mocap system (mocap) with sparse sensors. Although the sensor with an accelerometer, magnetometer, and gyroscope is cost-effective and offers the measured positions and rotations from these devices, it potentially suffers from noise, drift, and lost issues over time. The resulting character obtained from a sensor-based low-cost mocap system is thus generally not satisfactory. We address these issues by using a novel deep learning framework that consists of two networks, a motion estimator and a sensor data generator. When the aforementioned issues occur, the motion estimator feeds the newly synthesized sensor data obtained with the measured and predicted data from the sensor data generator until the issues have been resolved. Otherwise, the motion estimator receives the measured sensor data to accurately and continuously reconstruct the new character poses. In our examples, we show that our system outperforms the previous approach without the sensor data generator and we believe that it can be considered a handy and robust mocap system.