利用神经网络识别控制和管理平面的有毒信息

Xiaojiang Du, M. Shayman, R. Skoog
{"title":"利用神经网络识别控制和管理平面的有毒信息","authors":"Xiaojiang Du, M. Shayman, R. Skoog","doi":"10.1109/INM.2003.1194215","DOIUrl":null,"url":null,"abstract":"Poison message failure propagation is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks: some or all of the network elements have a software or protocol 'bug' that is activated on receipt of a certain network control/management message (the poison message). This activated 'bug' will cause the node to fail with some probability. If the network control or management is such that this message is persistently passed among the network nodes, and if the node failure probability is sufficiently high, large-scale instability can result. Identifying the responsible message type can permit filters to be configured to block poison message propagation, thereby preventing instability. Since message types have distinctive modes of propagation, the node failure pattern can provide valuable information to help identify the culprit message type. Through extensive simulations, we show that artificial neural networks are effective in isolating the responsible message type.","PeriodicalId":273743,"journal":{"name":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Using neural networks to identify control and management plane poison messages\",\"authors\":\"Xiaojiang Du, M. Shayman, R. Skoog\",\"doi\":\"10.1109/INM.2003.1194215\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Poison message failure propagation is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks: some or all of the network elements have a software or protocol 'bug' that is activated on receipt of a certain network control/management message (the poison message). This activated 'bug' will cause the node to fail with some probability. If the network control or management is such that this message is persistently passed among the network nodes, and if the node failure probability is sufficiently high, large-scale instability can result. Identifying the responsible message type can permit filters to be configured to block poison message propagation, thereby preventing instability. Since message types have distinctive modes of propagation, the node failure pattern can provide valuable information to help identify the culprit message type. Through extensive simulations, we show that artificial neural networks are effective in isolating the responsible message type.\",\"PeriodicalId\":273743,\"journal\":{\"name\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INM.2003.1194215\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFIP/IEEE Eighth International Symposium on Integrated Network Management, 2003.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INM.2003.1194215","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

有毒消息失败传播是一种导致电信和IP网络大规模失败的机制:一些或所有网络元素有一个软件或协议“错误”,在接收到某个网络控制/管理消息(有毒消息)时被激活。这个激活的“bug”将导致节点以一定的概率失败。如果网络控制或管理使得该消息在网络节点之间持续传递,并且如果节点故障概率足够高,则可能导致大规模的不稳定。确定负责的消息类型可以允许将过滤器配置为阻止有害消息的传播,从而防止不稳定。由于消息类型具有不同的传播模式,因此节点故障模式可以提供有价值的信息,帮助识别罪魁祸首消息类型。通过大量的仿真,我们证明了人工神经网络在隔离责任消息类型方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using neural networks to identify control and management plane poison messages
Poison message failure propagation is a mechanism that has been responsible for large scale failures in both telecommunications and IP networks: some or all of the network elements have a software or protocol 'bug' that is activated on receipt of a certain network control/management message (the poison message). This activated 'bug' will cause the node to fail with some probability. If the network control or management is such that this message is persistently passed among the network nodes, and if the node failure probability is sufficiently high, large-scale instability can result. Identifying the responsible message type can permit filters to be configured to block poison message propagation, thereby preventing instability. Since message types have distinctive modes of propagation, the node failure pattern can provide valuable information to help identify the culprit message type. Through extensive simulations, we show that artificial neural networks are effective in isolating the responsible message type.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信