从池化层捕获微变形用于离线签名验证

Yuchen Zheng, W. Ohyama, Brian Kenji Iwana, S. Uchida
{"title":"从池化层捕获微变形用于离线签名验证","authors":"Yuchen Zheng, W. Ohyama, Brian Kenji Iwana, S. Uchida","doi":"10.1109/ICDAR.2019.00180","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel Convolutional Neural Network (CNN) based method that extracts the location information (displacement features) of the maximums in the max-pooling operation and fuses it with the pooling features to capture the micro deformations between the genuine signatures and skilled forgeries as a feature extraction procedure. After the feature extraction procedure, we apply support vector machines (SVMs) as writer-dependent classifiers for each user to build the signature verification system. The extensive experimental results on GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets demonstrate that the proposed method can discriminate the genuine signatures and their corresponding skilled forgeries well and achieve state-of-the-art results on these datasets.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Capturing Micro Deformations from Pooling Layers for Offline Signature Verification\",\"authors\":\"Yuchen Zheng, W. Ohyama, Brian Kenji Iwana, S. Uchida\",\"doi\":\"10.1109/ICDAR.2019.00180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a novel Convolutional Neural Network (CNN) based method that extracts the location information (displacement features) of the maximums in the max-pooling operation and fuses it with the pooling features to capture the micro deformations between the genuine signatures and skilled forgeries as a feature extraction procedure. After the feature extraction procedure, we apply support vector machines (SVMs) as writer-dependent classifiers for each user to build the signature verification system. The extensive experimental results on GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets demonstrate that the proposed method can discriminate the genuine signatures and their corresponding skilled forgeries well and achieve state-of-the-art results on these datasets.\",\"PeriodicalId\":325437,\"journal\":{\"name\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"volume\":\"120 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Document Analysis and Recognition (ICDAR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDAR.2019.00180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在本文中,我们提出了一种基于卷积神经网络(CNN)的新方法,该方法提取最大池化操作中最大值的位置信息(位移特征),并将其与池化特征融合,以捕获真实签名和熟练伪造签名之间的微变形作为特征提取过程。在特征提取之后,我们将支持向量机(svm)作为每个用户的作者依赖分类器来构建签名验证系统。在GPDS-150、GPDS-300、GPDS-1000、GPDS-2000和GPDS-5000数据集上的大量实验结果表明,该方法可以很好地区分真实签名和相应的熟练伪造签名,并在这些数据集上取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capturing Micro Deformations from Pooling Layers for Offline Signature Verification
In this paper, we propose a novel Convolutional Neural Network (CNN) based method that extracts the location information (displacement features) of the maximums in the max-pooling operation and fuses it with the pooling features to capture the micro deformations between the genuine signatures and skilled forgeries as a feature extraction procedure. After the feature extraction procedure, we apply support vector machines (SVMs) as writer-dependent classifiers for each user to build the signature verification system. The extensive experimental results on GPDS-150, GPDS-300, GPDS-1000, GPDS-2000, and GPDS-5000 datasets demonstrate that the proposed method can discriminate the genuine signatures and their corresponding skilled forgeries well and achieve state-of-the-art results on these datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信