基于神经网络的三相pwm整流器直接功率控制开关状态选择

A. Fekik, H. Denoun, Mohamed Lamine Hamida, A. Azar, M. Atig, Q. Zhu
{"title":"基于神经网络的三相pwm整流器直接功率控制开关状态选择","authors":"A. Fekik, H. Denoun, Mohamed Lamine Hamida, A. Azar, M. Atig, Q. Zhu","doi":"10.1109/ICMIC.2018.8529997","DOIUrl":null,"url":null,"abstract":"This article proposes an intelligent approach to the Direct Power Control technique of the PWM rectifier, this control technique improves the performance of PWM converter, called Direct Power Control Based on Artificial Neural Network (ANN), applied for the selection of the optimal control vector. DPC-ANN ensures smooth control of active and reactive power in all Sectors and reduces current ripple. Finally, the developed DPC was tested by simulation, the simulation results proved the excellent performance of the proposed DPC scheme.","PeriodicalId":262938,"journal":{"name":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Neural Network Based Switching State Selection for Direct Power Control of Three Phase PWM-Rectifier\",\"authors\":\"A. Fekik, H. Denoun, Mohamed Lamine Hamida, A. Azar, M. Atig, Q. Zhu\",\"doi\":\"10.1109/ICMIC.2018.8529997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes an intelligent approach to the Direct Power Control technique of the PWM rectifier, this control technique improves the performance of PWM converter, called Direct Power Control Based on Artificial Neural Network (ANN), applied for the selection of the optimal control vector. DPC-ANN ensures smooth control of active and reactive power in all Sectors and reduces current ripple. Finally, the developed DPC was tested by simulation, the simulation results proved the excellent performance of the proposed DPC scheme.\",\"PeriodicalId\":262938,\"journal\":{\"name\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 10th International Conference on Modelling, Identification and Control (ICMIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMIC.2018.8529997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 10th International Conference on Modelling, Identification and Control (ICMIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMIC.2018.8529997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文提出了一种基于人工神经网络的PWM整流器直接功率控制技术,这种控制技术可以提高PWM变换器的性能,并将其应用于最优控制向量的选择。DPC-ANN确保所有扇区有功和无功功率的平稳控制,并减少电流纹波。最后,对所提出的DPC方案进行了仿真测试,仿真结果证明了所提出的DPC方案的优良性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural Network Based Switching State Selection for Direct Power Control of Three Phase PWM-Rectifier
This article proposes an intelligent approach to the Direct Power Control technique of the PWM rectifier, this control technique improves the performance of PWM converter, called Direct Power Control Based on Artificial Neural Network (ANN), applied for the selection of the optimal control vector. DPC-ANN ensures smooth control of active and reactive power in all Sectors and reduces current ripple. Finally, the developed DPC was tested by simulation, the simulation results proved the excellent performance of the proposed DPC scheme.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信