GOPT决议

Fei Liu, J. Roddick
{"title":"GOPT决议","authors":"Fei Liu, J. Roddick","doi":"10.1504/IJAISC.2011.042714","DOIUrl":null,"url":null,"abstract":"Some resolution strategies, such as SLD-resolution, are such that a derivation may be infinite even on a logic program that has a finite Herbrand universe. This paper introduces GOPT-resolution, a new deduction strategy for deriving solutions from a set of rules that improves on previous methods by preventing derivations that have infinite recursion. The paper outlines the process behind the development of GOPT-resolution based on PT-resolution. GOPT-resolution is then developed by distinguishing between goal-relevant and goal-irrelevant P-domains.","PeriodicalId":364571,"journal":{"name":"Int. J. Artif. Intell. Soft Comput.","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"GOPT Resolution\",\"authors\":\"Fei Liu, J. Roddick\",\"doi\":\"10.1504/IJAISC.2011.042714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Some resolution strategies, such as SLD-resolution, are such that a derivation may be infinite even on a logic program that has a finite Herbrand universe. This paper introduces GOPT-resolution, a new deduction strategy for deriving solutions from a set of rules that improves on previous methods by preventing derivations that have infinite recursion. The paper outlines the process behind the development of GOPT-resolution based on PT-resolution. GOPT-resolution is then developed by distinguishing between goal-relevant and goal-irrelevant P-domains.\",\"PeriodicalId\":364571,\"journal\":{\"name\":\"Int. J. Artif. Intell. Soft Comput.\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Artif. Intell. Soft Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/IJAISC.2011.042714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Artif. Intell. Soft Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/IJAISC.2011.042714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一些解析策略,例如sld解析,使得即使在具有有限Herbrand宇宙的逻辑程序上,推导也可能是无限的。本文介绍了GOPT-resolution,一种从一组规则中推导解的新推导策略,它通过防止具有无限递归的推导而改进了以前的方法。本文概述了基于pt分辨率的gopt分辨率的发展过程。然后通过区分目标相关和目标无关的p域来开发gopt分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
GOPT Resolution
Some resolution strategies, such as SLD-resolution, are such that a derivation may be infinite even on a logic program that has a finite Herbrand universe. This paper introduces GOPT-resolution, a new deduction strategy for deriving solutions from a set of rules that improves on previous methods by preventing derivations that have infinite recursion. The paper outlines the process behind the development of GOPT-resolution based on PT-resolution. GOPT-resolution is then developed by distinguishing between goal-relevant and goal-irrelevant P-domains.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信