基于生成对抗网络的结构健康监测自编码器

Giorgia Colombera, Luca Rosafalco, Matteo Torzoni, F. Gatti, S. Mariani, Andrea Manzoni, A. Corigliano
{"title":"基于生成对抗网络的结构健康监测自编码器","authors":"Giorgia Colombera, Luca Rosafalco, Matteo Torzoni, F. Gatti, S. Mariani, Andrea Manzoni, A. Corigliano","doi":"10.3390/ioca2021-10887","DOIUrl":null,"url":null,"abstract":"Civil structures, infrastructures and lifelines are constantly threatened by natural hazards and climate change. Structural Health Monitoring (SHM) has therefore become an active field of research in view of online structural damage detection and long term maintenance planning. In this work, we propose a new SHM approach leveraging a deep Generative Adversarial Network (GAN), trained on synthetic time histories representing the structural responses of both damaged and undamaged multistory building to earthquake ground motion. In the prediction phase, the GAN generates plausible signals for different damage states, based only on undamaged recorded or simulated structural responses, thus without the need to rely upon real recordings linked to damaged conditions.","PeriodicalId":155422,"journal":{"name":"Computer Sciences & Mathematics Forum","volume":"56 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Generative Adversarial Network Based Autoencoder for Structural Health Monitoring\",\"authors\":\"Giorgia Colombera, Luca Rosafalco, Matteo Torzoni, F. Gatti, S. Mariani, Andrea Manzoni, A. Corigliano\",\"doi\":\"10.3390/ioca2021-10887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Civil structures, infrastructures and lifelines are constantly threatened by natural hazards and climate change. Structural Health Monitoring (SHM) has therefore become an active field of research in view of online structural damage detection and long term maintenance planning. In this work, we propose a new SHM approach leveraging a deep Generative Adversarial Network (GAN), trained on synthetic time histories representing the structural responses of both damaged and undamaged multistory building to earthquake ground motion. In the prediction phase, the GAN generates plausible signals for different damage states, based only on undamaged recorded or simulated structural responses, thus without the need to rely upon real recordings linked to damaged conditions.\",\"PeriodicalId\":155422,\"journal\":{\"name\":\"Computer Sciences & Mathematics Forum\",\"volume\":\"56 6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Sciences & Mathematics Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/ioca2021-10887\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Sciences & Mathematics Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ioca2021-10887","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

土木结构、基础设施和生命线不断受到自然灾害和气候变化的威胁。因此,结构健康监测(SHM)在结构损伤在线检测和长期维修规划方面成为一个活跃的研究领域。在这项工作中,我们提出了一种新的SHM方法,利用深度生成对抗网络(GAN),训练合成时程,表示受损和未受损多层建筑对地震地面运动的结构响应。在预测阶段,GAN仅根据未损坏的记录或模拟结构响应生成不同损坏状态的可信信号,因此无需依赖与损坏条件相关的真实记录。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Generative Adversarial Network Based Autoencoder for Structural Health Monitoring
Civil structures, infrastructures and lifelines are constantly threatened by natural hazards and climate change. Structural Health Monitoring (SHM) has therefore become an active field of research in view of online structural damage detection and long term maintenance planning. In this work, we propose a new SHM approach leveraging a deep Generative Adversarial Network (GAN), trained on synthetic time histories representing the structural responses of both damaged and undamaged multistory building to earthquake ground motion. In the prediction phase, the GAN generates plausible signals for different damage states, based only on undamaged recorded or simulated structural responses, thus without the need to rely upon real recordings linked to damaged conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信