地雷识别探地雷达数据时频域特征分析

O. Lopera, N. Milisavljevie, D. Daniels, B. Macq
{"title":"地雷识别探地雷达数据时频域特征分析","authors":"O. Lopera, N. Milisavljevie, D. Daniels, B. Macq","doi":"10.1109/AGPR.2007.386544","DOIUrl":null,"url":null,"abstract":"In this paper, the problem of detecting buried antipersonnel (AP) landmines is tackled in the broader context of target identification: determining relevant features, extracted from impulse ground-penetrating radar (GPR) signals, which can be used to classify landmines. These features are extracted in the time-frequency domain using the Wigner-Ville distribution (WVD) and the wavelet transform (WT). Radar data are collected using the MINEHOUNDTM hand-held dual-sensor system over two types of soil and for different landmines and objects. The Wilk's lambda value is used as a criterion for optimal discrimination. Results show that time-frequency signatures from WVD contain more valuable information than the features extracted using WT. Therefore, they could improve landmine and false alarm classification and help to differentiate between two different landmines.","PeriodicalId":411104,"journal":{"name":"2007 4th International Workshop on, Advanced Ground Penetrating Radar","volume":"145 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Time-frequency domain signature analysis of GPR data for landmine identification\",\"authors\":\"O. Lopera, N. Milisavljevie, D. Daniels, B. Macq\",\"doi\":\"10.1109/AGPR.2007.386544\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the problem of detecting buried antipersonnel (AP) landmines is tackled in the broader context of target identification: determining relevant features, extracted from impulse ground-penetrating radar (GPR) signals, which can be used to classify landmines. These features are extracted in the time-frequency domain using the Wigner-Ville distribution (WVD) and the wavelet transform (WT). Radar data are collected using the MINEHOUNDTM hand-held dual-sensor system over two types of soil and for different landmines and objects. The Wilk's lambda value is used as a criterion for optimal discrimination. Results show that time-frequency signatures from WVD contain more valuable information than the features extracted using WT. Therefore, they could improve landmine and false alarm classification and help to differentiate between two different landmines.\",\"PeriodicalId\":411104,\"journal\":{\"name\":\"2007 4th International Workshop on, Advanced Ground Penetrating Radar\",\"volume\":\"145 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 4th International Workshop on, Advanced Ground Penetrating Radar\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AGPR.2007.386544\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 4th International Workshop on, Advanced Ground Penetrating Radar","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AGPR.2007.386544","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文从目标识别的大背景下研究了埋地杀伤人员地雷的探测问题:从脉冲探地雷达(GPR)信号中提取相关特征,并利用这些特征对地雷进行分类。使用Wigner-Ville分布(WVD)和小波变换(WT)在时频域中提取这些特征。雷达数据是使用MINEHOUNDTM手持式双传感器系统在两种类型的土壤和不同的地雷和目标上收集的。Wilk的lambda值被用作最佳辨别的标准。结果表明,WVD提取的时频特征比小波变换提取的特征包含更多有价值的信息,因此可以提高地雷和虚警的分类,有助于区分两种不同的地雷。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Time-frequency domain signature analysis of GPR data for landmine identification
In this paper, the problem of detecting buried antipersonnel (AP) landmines is tackled in the broader context of target identification: determining relevant features, extracted from impulse ground-penetrating radar (GPR) signals, which can be used to classify landmines. These features are extracted in the time-frequency domain using the Wigner-Ville distribution (WVD) and the wavelet transform (WT). Radar data are collected using the MINEHOUNDTM hand-held dual-sensor system over two types of soil and for different landmines and objects. The Wilk's lambda value is used as a criterion for optimal discrimination. Results show that time-frequency signatures from WVD contain more valuable information than the features extracted using WT. Therefore, they could improve landmine and false alarm classification and help to differentiate between two different landmines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信