{"title":"基于多分辨率分析的FCM分割新方法","authors":"Y. Benzian, Nacéra Benamrane","doi":"10.4018/IJFSA.2018100105","DOIUrl":null,"url":null,"abstract":"This article presents a modified Fuzzy C Means segmentation approach based on multi-resolution image analysis. Fuzzy C-Means standard methods are improved through fuzzy clustering at different image resolution levels by propagating fuzzy membership values pyramidally from a lower to a higher level. Processing at a lower resolution image level provides a rough pixel classification result, thus, a pixel is assigned to a cluster to which the majority of its neighborhood pixels belongs. The aim of fuzzy clustering with multi-resolution images is to avoid pixel misclassification according to the spatial cluster of the neighbourhood of each pixel in order to have more homogeneous regions and eliminate noisy regions present in the image. This method is tested particularly on samples and medical images with gaussian noise by varying multiresolution parameter values for better analysis. The results obtained after multi-resolution clustering are giving satisfactory results by comparing this approach with standard FCM and spatial FCM ones.","PeriodicalId":233724,"journal":{"name":"Int. J. Fuzzy Syst. Appl.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"New FCM Segmentation Approach Based on Multi-Resolution Analysis\",\"authors\":\"Y. Benzian, Nacéra Benamrane\",\"doi\":\"10.4018/IJFSA.2018100105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article presents a modified Fuzzy C Means segmentation approach based on multi-resolution image analysis. Fuzzy C-Means standard methods are improved through fuzzy clustering at different image resolution levels by propagating fuzzy membership values pyramidally from a lower to a higher level. Processing at a lower resolution image level provides a rough pixel classification result, thus, a pixel is assigned to a cluster to which the majority of its neighborhood pixels belongs. The aim of fuzzy clustering with multi-resolution images is to avoid pixel misclassification according to the spatial cluster of the neighbourhood of each pixel in order to have more homogeneous regions and eliminate noisy regions present in the image. This method is tested particularly on samples and medical images with gaussian noise by varying multiresolution parameter values for better analysis. The results obtained after multi-resolution clustering are giving satisfactory results by comparing this approach with standard FCM and spatial FCM ones.\",\"PeriodicalId\":233724,\"journal\":{\"name\":\"Int. J. Fuzzy Syst. Appl.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Fuzzy Syst. Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJFSA.2018100105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Fuzzy Syst. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJFSA.2018100105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
New FCM Segmentation Approach Based on Multi-Resolution Analysis
This article presents a modified Fuzzy C Means segmentation approach based on multi-resolution image analysis. Fuzzy C-Means standard methods are improved through fuzzy clustering at different image resolution levels by propagating fuzzy membership values pyramidally from a lower to a higher level. Processing at a lower resolution image level provides a rough pixel classification result, thus, a pixel is assigned to a cluster to which the majority of its neighborhood pixels belongs. The aim of fuzzy clustering with multi-resolution images is to avoid pixel misclassification according to the spatial cluster of the neighbourhood of each pixel in order to have more homogeneous regions and eliminate noisy regions present in the image. This method is tested particularly on samples and medical images with gaussian noise by varying multiresolution parameter values for better analysis. The results obtained after multi-resolution clustering are giving satisfactory results by comparing this approach with standard FCM and spatial FCM ones.