人类组织学图像的自动分类,一种多实例学习方法

Dehua Zhao, Yixin Chen, H. Correa
{"title":"人类组织学图像的自动分类,一种多实例学习方法","authors":"Dehua Zhao, Yixin Chen, H. Correa","doi":"10.1109/LSSA.2006.250411","DOIUrl":null,"url":null,"abstract":"In this paper, we apply a multiple-instance learning (MIL) method, MILES (multiple-instance learning via embedded instance selection), to human histological image classification. MILES converts a MIL problem to a supervised learning problem by an instance-based feature mapping. 1-norm SVM is then adopted to select features and construct a classifier simultaneously. MILES identifies the sub-images that reflect underlying category concepts, and use them for classification. Experimental validation is provided based on images from different organs and parts of the body. The new approach demonstrates significantly improved performance in comparison with a method based on a Gaussian mixture model","PeriodicalId":360097,"journal":{"name":"2006 IEEE/NLM Life Science Systems and Applications Workshop","volume":"111 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Automated Classification of Human Histological Images, A Multiple-Instance Learning Approach\",\"authors\":\"Dehua Zhao, Yixin Chen, H. Correa\",\"doi\":\"10.1109/LSSA.2006.250411\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we apply a multiple-instance learning (MIL) method, MILES (multiple-instance learning via embedded instance selection), to human histological image classification. MILES converts a MIL problem to a supervised learning problem by an instance-based feature mapping. 1-norm SVM is then adopted to select features and construct a classifier simultaneously. MILES identifies the sub-images that reflect underlying category concepts, and use them for classification. Experimental validation is provided based on images from different organs and parts of the body. The new approach demonstrates significantly improved performance in comparison with a method based on a Gaussian mixture model\",\"PeriodicalId\":360097,\"journal\":{\"name\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"volume\":\"111 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE/NLM Life Science Systems and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSSA.2006.250411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE/NLM Life Science Systems and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSSA.2006.250411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

在本文中,我们将多实例学习(MIL)方法MILES(通过嵌入式实例选择的多实例学习)应用于人体组织图像分类。MILES通过基于实例的特征映射将MIL问题转换为监督学习问题。然后采用1范数支持向量机进行特征选择,同时构造分类器。MILES识别反映潜在类别概念的子图像,并使用它们进行分类。基于来自身体不同器官和部位的图像提供实验验证。与基于高斯混合模型的方法相比,该方法的性能得到了显著提高
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automated Classification of Human Histological Images, A Multiple-Instance Learning Approach
In this paper, we apply a multiple-instance learning (MIL) method, MILES (multiple-instance learning via embedded instance selection), to human histological image classification. MILES converts a MIL problem to a supervised learning problem by an instance-based feature mapping. 1-norm SVM is then adopted to select features and construct a classifier simultaneously. MILES identifies the sub-images that reflect underlying category concepts, and use them for classification. Experimental validation is provided based on images from different organs and parts of the body. The new approach demonstrates significantly improved performance in comparison with a method based on a Gaussian mixture model
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信