走向最优排名指标

N. Sebe, M. Lew, D. P. Huijsmans
{"title":"走向最优排名指标","authors":"N. Sebe, M. Lew, D. P. Huijsmans","doi":"10.1109/SIBGRA.1998.722776","DOIUrl":null,"url":null,"abstract":"Euclidean metric is frequently used in computer vision, mostly ad-hoc without any justification. However we have found that other metrics like double exponential metric or Cauchy one provide better results, in accordance with the maximum likelihood approach. In this paper we experiment with different modeling functions for similarity noise and compute the accuracy of different methods using these modeling functions in three kinds of applications: content-based image retrieval from a large database, stereo matching and video sequences. We provide a way to determine the modeling distribution which fits best the similarity noise distribution according to the ground truth. In the optimum case, when one has chosen the best modeling distribution, its corresponding metric will give the best ranking results for the ground truth provided.","PeriodicalId":282177,"journal":{"name":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Towards optimal ranking metrics\",\"authors\":\"N. Sebe, M. Lew, D. P. Huijsmans\",\"doi\":\"10.1109/SIBGRA.1998.722776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Euclidean metric is frequently used in computer vision, mostly ad-hoc without any justification. However we have found that other metrics like double exponential metric or Cauchy one provide better results, in accordance with the maximum likelihood approach. In this paper we experiment with different modeling functions for similarity noise and compute the accuracy of different methods using these modeling functions in three kinds of applications: content-based image retrieval from a large database, stereo matching and video sequences. We provide a way to determine the modeling distribution which fits best the similarity noise distribution according to the ground truth. In the optimum case, when one has chosen the best modeling distribution, its corresponding metric will give the best ranking results for the ground truth provided.\",\"PeriodicalId\":282177,\"journal\":{\"name\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIBGRA.1998.722776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings SIBGRAPI'98. International Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIBGRA.1998.722776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

欧几里得度量法是计算机视觉中常用的度量方法,但大多是特别的,没有任何理由。然而,我们发现其他指标,如双指数指标或柯西指标提供更好的结果,根据最大似然方法。本文在基于内容的大数据库图像检索、立体匹配和视频序列三种应用中,对相似噪声的不同建模函数进行了实验,并计算了不同建模方法的精度。给出了一种根据地面真实情况确定最适合相似噪声分布的建模分布的方法。在最优情况下,当选择了最佳建模分布时,其相应的度量将给出所提供的基础真值的最佳排序结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards optimal ranking metrics
Euclidean metric is frequently used in computer vision, mostly ad-hoc without any justification. However we have found that other metrics like double exponential metric or Cauchy one provide better results, in accordance with the maximum likelihood approach. In this paper we experiment with different modeling functions for similarity noise and compute the accuracy of different methods using these modeling functions in three kinds of applications: content-based image retrieval from a large database, stereo matching and video sequences. We provide a way to determine the modeling distribution which fits best the similarity noise distribution according to the ground truth. In the optimum case, when one has chosen the best modeling distribution, its corresponding metric will give the best ranking results for the ground truth provided.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信