基于约束贝叶斯优化的SerDes通道均衡优化

M. A. Dolatsara
{"title":"基于约束贝叶斯优化的SerDes通道均衡优化","authors":"M. A. Dolatsara","doi":"10.1109/EMCSI39492.2022.10050240","DOIUrl":null,"url":null,"abstract":"Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.","PeriodicalId":250856,"journal":{"name":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Equalization Optimization for SerDes Channels with Constrained Bayesian Optimization\",\"authors\":\"M. A. Dolatsara\",\"doi\":\"10.1109/EMCSI39492.2022.10050240\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.\",\"PeriodicalId\":250856,\"journal\":{\"name\":\"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EMCSI39492.2022.10050240\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on Electromagnetic Compatibility & Signal/Power Integrity (EMCSI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EMCSI39492.2022.10050240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

分配前馈均衡器(FFE)的参数可能是一项具有挑战性且耗时的任务。在这项工作中,我们引入了一种机器学习算法来自动优化这些参数,而不需要领域专家。由于对FFE参数的约束,传统的优化器不适用于此问题。因此,我们对问题进行了重新表述,并提出了一种改进的贝叶斯优化算法来考虑这一约束。通过实例验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Equalization Optimization for SerDes Channels with Constrained Bayesian Optimization
Assigning parameters of a feed-forward equalizer (FFE) can be a challenging and time-consuming task. In this work we introduce a machine learning algorithm to automatically optimize these parameters without the need to a domain expert. Conventional optimizers are not applicable to this problem because of a constraint over the FFE parameters. Therefore, we reformulate the problem and propose a modified Bayesian optimization algorithm to take this constraint into account. The proposed approach is validated with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信