机器人抓取的多目标粒子群优化方法

C. Walha, H. Bezine, A. Alimi
{"title":"机器人抓取的多目标粒子群优化方法","authors":"C. Walha, H. Bezine, A. Alimi","doi":"10.1109/ICBR.2013.6729267","DOIUrl":null,"url":null,"abstract":"Automatic grasp planning is an active field in robotic research. Its main purpose is to find the contact points between the robotic hand and an object in order to grasp it efficiently. As the robotic hand has many degrees of freedom which induce a huge number of solutions, the search for the “best” solution became an optimization problem. The search of such a solution is conducted by a grasp quality measurement which will be called the objective (or fitness) function. This paper proposes a Multi-Objective Particle Swarm Optimization (MOPSO) approach to tackle the grasp planning problem. Its fitness functions are based in two different grasp quality measurements. The MOPSO approach is then tested in HandGrasp simulator with simple objects. The results will be compared with two simple Particle Swarm Optimization (PSO) approaches and demonstrate its performance.","PeriodicalId":269516,"journal":{"name":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Multi-Objective Particle Swarm Optimization approach to robotic grasping\",\"authors\":\"C. Walha, H. Bezine, A. Alimi\",\"doi\":\"10.1109/ICBR.2013.6729267\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic grasp planning is an active field in robotic research. Its main purpose is to find the contact points between the robotic hand and an object in order to grasp it efficiently. As the robotic hand has many degrees of freedom which induce a huge number of solutions, the search for the “best” solution became an optimization problem. The search of such a solution is conducted by a grasp quality measurement which will be called the objective (or fitness) function. This paper proposes a Multi-Objective Particle Swarm Optimization (MOPSO) approach to tackle the grasp planning problem. Its fitness functions are based in two different grasp quality measurements. The MOPSO approach is then tested in HandGrasp simulator with simple objects. The results will be compared with two simple Particle Swarm Optimization (PSO) approaches and demonstrate its performance.\",\"PeriodicalId\":269516,\"journal\":{\"name\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBR.2013.6729267\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Individual and Collective Behaviors in Robotics (ICBR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBR.2013.6729267","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

自动抓取规划是机器人研究的一个活跃领域。它的主要目的是找到机器人手与物体之间的接触点,以便有效地抓取物体。由于机器人手具有许多自由度,因而产生了大量的解,因此寻找“最优”解成为一个优化问题。对这样一个解的搜索是通过一个被称为目标(或适应度)函数的把握质量度量来进行的。提出了一种多目标粒子群优化(MOPSO)方法来解决抓取规划问题。它的适应度函数基于两种不同的抓握质量测量。然后在简单对象的手抓模拟器中测试了MOPSO方法。结果将与两种简单的粒子群优化(PSO)方法进行比较,并证明其性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-Objective Particle Swarm Optimization approach to robotic grasping
Automatic grasp planning is an active field in robotic research. Its main purpose is to find the contact points between the robotic hand and an object in order to grasp it efficiently. As the robotic hand has many degrees of freedom which induce a huge number of solutions, the search for the “best” solution became an optimization problem. The search of such a solution is conducted by a grasp quality measurement which will be called the objective (or fitness) function. This paper proposes a Multi-Objective Particle Swarm Optimization (MOPSO) approach to tackle the grasp planning problem. Its fitness functions are based in two different grasp quality measurements. The MOPSO approach is then tested in HandGrasp simulator with simple objects. The results will be compared with two simple Particle Swarm Optimization (PSO) approaches and demonstrate its performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信