Ad-hocBusPoI:基于城市公交机动性和智能手机群体感知的临时停留地点情境分析

Ratna Mandal, Prasenjit Karmakar, Abhijit Roy, Arpan Saha, S. Chatterjee, Sandip Chakraborty, Sujoy Saha, S. Nandi
{"title":"Ad-hocBusPoI:基于城市公交机动性和智能手机群体感知的临时停留地点情境分析","authors":"Ratna Mandal, Prasenjit Karmakar, Abhijit Roy, Arpan Saha, S. Chatterjee, Sandip Chakraborty, Sujoy Saha, S. Nandi","doi":"10.1145/3397536.3422273","DOIUrl":null,"url":null,"abstract":"Public city bus services across various developing cities inhabit multiple stay-locations on the routes due to ad-hoc bus stops to provide on-demand passenger boarding and alighting services. Characterizing these stay-locations is essential to correctly develop models for bus transit patterns used in various digital navigation services. In this poster, we create a deep learning-driven methodology to characterize ad-hoc stay-locations over bus routes based on crowd-sensing contextual information. Experiments over 720km of bus travel data in a semi-urban city in India indicate promising results from the model in terms of good detection accuracy.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ad-hocBusPoI: Context Analysis of Ad-hoc Stay-locations from Intra-city Bus Mobility and Smartphone Crowdsensing\",\"authors\":\"Ratna Mandal, Prasenjit Karmakar, Abhijit Roy, Arpan Saha, S. Chatterjee, Sandip Chakraborty, Sujoy Saha, S. Nandi\",\"doi\":\"10.1145/3397536.3422273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Public city bus services across various developing cities inhabit multiple stay-locations on the routes due to ad-hoc bus stops to provide on-demand passenger boarding and alighting services. Characterizing these stay-locations is essential to correctly develop models for bus transit patterns used in various digital navigation services. In this poster, we create a deep learning-driven methodology to characterize ad-hoc stay-locations over bus routes based on crowd-sensing contextual information. Experiments over 720km of bus travel data in a semi-urban city in India indicate promising results from the model in terms of good detection accuracy.\",\"PeriodicalId\":233918,\"journal\":{\"name\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"volume\":\"134 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 28th International Conference on Advances in Geographic Information Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3397536.3422273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

各个发展中城市的公共巴士服务在路线上有多个停留点,因为有专门的巴士站提供按需乘客上下车服务。表征这些停留位置对于正确开发各种数字导航服务中使用的公共汽车运输模式模型至关重要。在这张海报中,我们创建了一种深度学习驱动的方法,以基于人群感知上下文信息来表征公交路线上的临时停留位置。在印度一个半城市进行的超过720公里的公交出行数据实验表明,该模型在良好的检测精度方面取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ad-hocBusPoI: Context Analysis of Ad-hoc Stay-locations from Intra-city Bus Mobility and Smartphone Crowdsensing
Public city bus services across various developing cities inhabit multiple stay-locations on the routes due to ad-hoc bus stops to provide on-demand passenger boarding and alighting services. Characterizing these stay-locations is essential to correctly develop models for bus transit patterns used in various digital navigation services. In this poster, we create a deep learning-driven methodology to characterize ad-hoc stay-locations over bus routes based on crowd-sensing contextual information. Experiments over 720km of bus travel data in a semi-urban city in India indicate promising results from the model in terms of good detection accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信