基于IPSO算法和BP神经网络的无线传感器网络入侵检测

Xue Lu, Dezhi Han, Letian Duan, Qiuting Tian
{"title":"基于IPSO算法和BP神经网络的无线传感器网络入侵检测","authors":"Xue Lu, Dezhi Han, Letian Duan, Qiuting Tian","doi":"10.1504/ijcse.2020.10028357","DOIUrl":null,"url":null,"abstract":"The sensor nodes of wireless sensor networks (WSNs) are deployed to an open and unsupervised region, and they are vulnerable to various types of attacks. Intrusion detection system can detect network attacks that nodes suffer from. This paper combines improved particle swarm optimisation (IPSO) algorithm and back-propagation neural network (BPNN), named IPSO-BPNN. We propose an intrusion detection model of WSNs based on a hierarchical structure. First, we use IPSO algorithm to optimise the initial parameters of BPNN to avoid falling into the local optimum. Then, we apply IPSO-BPNN to the intrusion detection of WSNs. Finally, we use benchmark NSL-KDD and UNSW-NB15 datasets to verify the performance of the IPSO-BPNN. The simulation results show that IPSO-BPNN has faster convergence speed, higher detection accuracy rate and lower false positive rate compared with BPNN and BPNN optimised by PSO algorithm, which can meet the WSNs intrusion detection requirements.","PeriodicalId":340410,"journal":{"name":"Int. J. Comput. Sci. Eng.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Intrusion detection of wireless sensor networks based on IPSO algorithm and BP neural network\",\"authors\":\"Xue Lu, Dezhi Han, Letian Duan, Qiuting Tian\",\"doi\":\"10.1504/ijcse.2020.10028357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sensor nodes of wireless sensor networks (WSNs) are deployed to an open and unsupervised region, and they are vulnerable to various types of attacks. Intrusion detection system can detect network attacks that nodes suffer from. This paper combines improved particle swarm optimisation (IPSO) algorithm and back-propagation neural network (BPNN), named IPSO-BPNN. We propose an intrusion detection model of WSNs based on a hierarchical structure. First, we use IPSO algorithm to optimise the initial parameters of BPNN to avoid falling into the local optimum. Then, we apply IPSO-BPNN to the intrusion detection of WSNs. Finally, we use benchmark NSL-KDD and UNSW-NB15 datasets to verify the performance of the IPSO-BPNN. The simulation results show that IPSO-BPNN has faster convergence speed, higher detection accuracy rate and lower false positive rate compared with BPNN and BPNN optimised by PSO algorithm, which can meet the WSNs intrusion detection requirements.\",\"PeriodicalId\":340410,\"journal\":{\"name\":\"Int. J. Comput. Sci. Eng.\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Comput. Sci. Eng.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1504/ijcse.2020.10028357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Sci. Eng.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcse.2020.10028357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

无线传感器网络的传感器节点部署在一个开放的无监督区域,容易受到各种攻击。入侵检测系统可以检测节点遭受的网络攻击。本文将改进粒子群优化算法(IPSO)与反向传播神经网络(BPNN)相结合,命名为IPSO-BPNN。提出了一种基于分层结构的wsn入侵检测模型。首先,我们使用IPSO算法对BPNN的初始参数进行优化,避免陷入局部最优。然后,我们将IPSO-BPNN应用到wsn的入侵检测中。最后,我们使用基准NSL-KDD和UNSW-NB15数据集来验证IPSO-BPNN的性能。仿真结果表明,与BPNN和经PSO算法优化的BPNN相比,IPSO-BPNN具有更快的收敛速度、更高的检测准确率和更低的误报率,能够满足WSNs入侵检测的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intrusion detection of wireless sensor networks based on IPSO algorithm and BP neural network
The sensor nodes of wireless sensor networks (WSNs) are deployed to an open and unsupervised region, and they are vulnerable to various types of attacks. Intrusion detection system can detect network attacks that nodes suffer from. This paper combines improved particle swarm optimisation (IPSO) algorithm and back-propagation neural network (BPNN), named IPSO-BPNN. We propose an intrusion detection model of WSNs based on a hierarchical structure. First, we use IPSO algorithm to optimise the initial parameters of BPNN to avoid falling into the local optimum. Then, we apply IPSO-BPNN to the intrusion detection of WSNs. Finally, we use benchmark NSL-KDD and UNSW-NB15 datasets to verify the performance of the IPSO-BPNN. The simulation results show that IPSO-BPNN has faster convergence speed, higher detection accuracy rate and lower false positive rate compared with BPNN and BPNN optimised by PSO algorithm, which can meet the WSNs intrusion detection requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信