基于光学字符识别和标记的智能文档查找

A. M. Abbas, M. S. Hameed, S. Balakrishnan, K. Anandh
{"title":"基于光学字符识别和标记的智能文档查找","authors":"A. M. Abbas, M. S. Hameed, S. Balakrishnan, K. Anandh","doi":"10.1109/ICACRS55517.2022.10029142","DOIUrl":null,"url":null,"abstract":"In the era of digitalization, the assortment and exploration of great volumes of documents is becoming progressively significant for enterprises to increase their productions and practices. Optical Character Recognition (OCR) is a procedure of identifying text in scanned (image-based) documents. This paper aims to deliver seamless searching of documents in file systems using Optical Character Recognition (OCR) and Natural Language Processing (NLP). Our paper includes the following phases: \"Text Identification (in terms of text files), Image Capturing, Image Enhancement, Image Identification, OCR, Data Extraction and Quality Assurance\". In case of text files, the data extraction is done in the first phase itself. The document management system \"processes both structured document images (ones which have a standard format) and unstructured document images\" (ones which do not have a standard format). In the tagging phase, the document is divided into segments and the tags for each segment are generated using Natural Language Processing.","PeriodicalId":407202,"journal":{"name":"2022 International Conference on Automation, Computing and Renewable Systems (ICACRS)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Intelligent Document Finding using Optical Character Recognition and Tagging\",\"authors\":\"A. M. Abbas, M. S. Hameed, S. Balakrishnan, K. Anandh\",\"doi\":\"10.1109/ICACRS55517.2022.10029142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the era of digitalization, the assortment and exploration of great volumes of documents is becoming progressively significant for enterprises to increase their productions and practices. Optical Character Recognition (OCR) is a procedure of identifying text in scanned (image-based) documents. This paper aims to deliver seamless searching of documents in file systems using Optical Character Recognition (OCR) and Natural Language Processing (NLP). Our paper includes the following phases: \\\"Text Identification (in terms of text files), Image Capturing, Image Enhancement, Image Identification, OCR, Data Extraction and Quality Assurance\\\". In case of text files, the data extraction is done in the first phase itself. The document management system \\\"processes both structured document images (ones which have a standard format) and unstructured document images\\\" (ones which do not have a standard format). In the tagging phase, the document is divided into segments and the tags for each segment are generated using Natural Language Processing.\",\"PeriodicalId\":407202,\"journal\":{\"name\":\"2022 International Conference on Automation, Computing and Renewable Systems (ICACRS)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Automation, Computing and Renewable Systems (ICACRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACRS55517.2022.10029142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Automation, Computing and Renewable Systems (ICACRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACRS55517.2022.10029142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在数字化时代,海量文档的分类和挖掘对于企业提高生产和实践水平日益重要。光学字符识别(OCR)是识别扫描(基于图像)文档中的文本的过程。本文旨在利用光学字符识别(OCR)和自然语言处理(NLP)实现文件系统中文档的无缝搜索。我们的论文包括以下几个阶段:“文本识别(就文本文件而言),图像捕获,图像增强,图像识别,OCR,数据提取和质量保证”。对于文本文件,数据提取是在第一阶段完成的。文档管理系统“处理结构化文档图像(具有标准格式的文档图像)和非结构化文档图像”(没有标准格式的文档图像)。在标记阶段,将文档划分为段,并使用自然语言处理生成每个段的标记。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Intelligent Document Finding using Optical Character Recognition and Tagging
In the era of digitalization, the assortment and exploration of great volumes of documents is becoming progressively significant for enterprises to increase their productions and practices. Optical Character Recognition (OCR) is a procedure of identifying text in scanned (image-based) documents. This paper aims to deliver seamless searching of documents in file systems using Optical Character Recognition (OCR) and Natural Language Processing (NLP). Our paper includes the following phases: "Text Identification (in terms of text files), Image Capturing, Image Enhancement, Image Identification, OCR, Data Extraction and Quality Assurance". In case of text files, the data extraction is done in the first phase itself. The document management system "processes both structured document images (ones which have a standard format) and unstructured document images" (ones which do not have a standard format). In the tagging phase, the document is divided into segments and the tags for each segment are generated using Natural Language Processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信