{"title":"在普适智能电网中集成智能家居技术用于区域供热控制","authors":"R. Mihailescu, P. Davidsson","doi":"10.1109/PERCOMW.2017.7917616","DOIUrl":null,"url":null,"abstract":"Pervasive technologies permeating our immediate surroundings provide a wide variety of low-cost means of sensing and actuating in our environment. This paper presents an approach for leveraging insights onto the lifestyle and routines of the users in order to control heating in a smart home through the use of individual climate zones, while ensuring system efficiency at a grid-level scale. Organizing smart living spaces into controllable individual climate zones allows us to exert a more fine-grained level of control. Thus, the system can benefit from a higher degree of freedom to adjust the heat demand according to the system objectives. Whereas district heating planing is only concerned with balancing heat demand among buildings, we extend the reach of these systems inside the home through the use of pervasive sensing and actuation. That is to say, we bridge the gap between traditional district heating systems and pervasive technologies in the home designed to maintain the thermal comfort of the user, in order to increase efficiency. The objective is to automate heating based on the user's preferences and behavioral patterns. The control scheme proposed applies a learning algorithm to take advantage of the sensing data inside the home in combination with an optimization procedure designed to trade-off the discomfort undertaken by the user and heating supply costs. We report on preliminary simulation results showing the effectiveness of our approach and describe the setup of our forthcoming field study.","PeriodicalId":319638,"journal":{"name":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Integration of Smart Home technologies for district heating control in Pervasive Smart Grids\",\"authors\":\"R. Mihailescu, P. Davidsson\",\"doi\":\"10.1109/PERCOMW.2017.7917616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pervasive technologies permeating our immediate surroundings provide a wide variety of low-cost means of sensing and actuating in our environment. This paper presents an approach for leveraging insights onto the lifestyle and routines of the users in order to control heating in a smart home through the use of individual climate zones, while ensuring system efficiency at a grid-level scale. Organizing smart living spaces into controllable individual climate zones allows us to exert a more fine-grained level of control. Thus, the system can benefit from a higher degree of freedom to adjust the heat demand according to the system objectives. Whereas district heating planing is only concerned with balancing heat demand among buildings, we extend the reach of these systems inside the home through the use of pervasive sensing and actuation. That is to say, we bridge the gap between traditional district heating systems and pervasive technologies in the home designed to maintain the thermal comfort of the user, in order to increase efficiency. The objective is to automate heating based on the user's preferences and behavioral patterns. The control scheme proposed applies a learning algorithm to take advantage of the sensing data inside the home in combination with an optimization procedure designed to trade-off the discomfort undertaken by the user and heating supply costs. We report on preliminary simulation results showing the effectiveness of our approach and describe the setup of our forthcoming field study.\",\"PeriodicalId\":319638,\"journal\":{\"name\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PERCOMW.2017.7917616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PERCOMW.2017.7917616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Integration of Smart Home technologies for district heating control in Pervasive Smart Grids
Pervasive technologies permeating our immediate surroundings provide a wide variety of low-cost means of sensing and actuating in our environment. This paper presents an approach for leveraging insights onto the lifestyle and routines of the users in order to control heating in a smart home through the use of individual climate zones, while ensuring system efficiency at a grid-level scale. Organizing smart living spaces into controllable individual climate zones allows us to exert a more fine-grained level of control. Thus, the system can benefit from a higher degree of freedom to adjust the heat demand according to the system objectives. Whereas district heating planing is only concerned with balancing heat demand among buildings, we extend the reach of these systems inside the home through the use of pervasive sensing and actuation. That is to say, we bridge the gap between traditional district heating systems and pervasive technologies in the home designed to maintain the thermal comfort of the user, in order to increase efficiency. The objective is to automate heating based on the user's preferences and behavioral patterns. The control scheme proposed applies a learning algorithm to take advantage of the sensing data inside the home in combination with an optimization procedure designed to trade-off the discomfort undertaken by the user and heating supply costs. We report on preliminary simulation results showing the effectiveness of our approach and describe the setup of our forthcoming field study.