数据骑师:HPC多层存储系统的自动数据管理

Woong Shin, Christopher Brumgard, Bing Xie, Sudharshan S. Vazhkudai, D. Ghoshal, S. Oral, L. Ramakrishnan
{"title":"数据骑师:HPC多层存储系统的自动数据管理","authors":"Woong Shin, Christopher Brumgard, Bing Xie, Sudharshan S. Vazhkudai, D. Ghoshal, S. Oral, L. Ramakrishnan","doi":"10.1109/IPDPS.2019.00061","DOIUrl":null,"url":null,"abstract":"We present the design and implementation of Data Jockey, a data management system for HPC multi-tiered storage systems. As a centralized data management control plane, Data Jockey automates bulk data movement and placement for scientific workflows and integrates into existing HPC storage infrastructures. Data Jockey simplifies data management by eliminating human effort in programming complex data movements, laying datasets across multiple storage tiers when supporting complex workflows, which in turn increases the usability of multi-tiered storage systems emerging in modern HPC data centers. Specifically, Data Jockey presents a new data management scheme called \"goal driven data management\" that can automatically infer low-level bulk data movement plans from declarative high-level goal statements that come from the lifetime of iterative runs of scientific workflows. While doing so, Data Jockey aims to minimize data wait times by taking responsibility for datasets that are unused or to be used, and aggressively utilizing the capacity of the upper, higher performant storage tiers. We evaluated a prototype implementation of Data Jockey under a synthetic workload based on a year's worth of Oak Ridge Leadership Computing Facility's (OLCF) operational logs. Our evaluations suggest that Data Jockey leads to higher utilization of the upper storage tiers while minimizing the programming effort of data movement compared to human involved, per-domain ad-hoc data management scripts.","PeriodicalId":403406,"journal":{"name":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Data Jockey: Automatic Data Management for HPC Multi-tiered Storage Systems\",\"authors\":\"Woong Shin, Christopher Brumgard, Bing Xie, Sudharshan S. Vazhkudai, D. Ghoshal, S. Oral, L. Ramakrishnan\",\"doi\":\"10.1109/IPDPS.2019.00061\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present the design and implementation of Data Jockey, a data management system for HPC multi-tiered storage systems. As a centralized data management control plane, Data Jockey automates bulk data movement and placement for scientific workflows and integrates into existing HPC storage infrastructures. Data Jockey simplifies data management by eliminating human effort in programming complex data movements, laying datasets across multiple storage tiers when supporting complex workflows, which in turn increases the usability of multi-tiered storage systems emerging in modern HPC data centers. Specifically, Data Jockey presents a new data management scheme called \\\"goal driven data management\\\" that can automatically infer low-level bulk data movement plans from declarative high-level goal statements that come from the lifetime of iterative runs of scientific workflows. While doing so, Data Jockey aims to minimize data wait times by taking responsibility for datasets that are unused or to be used, and aggressively utilizing the capacity of the upper, higher performant storage tiers. We evaluated a prototype implementation of Data Jockey under a synthetic workload based on a year's worth of Oak Ridge Leadership Computing Facility's (OLCF) operational logs. Our evaluations suggest that Data Jockey leads to higher utilization of the upper storage tiers while minimizing the programming effort of data movement compared to human involved, per-domain ad-hoc data management scripts.\",\"PeriodicalId\":403406,\"journal\":{\"name\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPDPS.2019.00061\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS.2019.00061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

介绍了一种用于高性能计算(HPC)多层存储系统的数据管理系统Data Jockey的设计与实现。作为一个集中式的数据管理控制平面,data Jockey可以为科学工作流自动化批量数据移动和放置,并集成到现有的HPC存储基础设施中。Data Jockey通过消除编程复杂数据移动的人力,在支持复杂工作流时跨多个存储层放置数据集,从而简化了数据管理,从而提高了现代HPC数据中心中出现的多层存储系统的可用性。具体来说,Data Jockey提出了一种新的数据管理方案,称为“目标驱动的数据管理”,它可以从声明性的高级目标语句中自动推断低级的批量数据移动计划,这些目标语句来自于科学工作流的迭代运行的生命周期。在这样做的同时,Data Jockey的目标是通过对未使用或将要使用的数据集负责,并积极利用更高性能存储层的容量,从而最大限度地减少数据等待时间。我们基于Oak Ridge Leadership Computing Facility (OLCF)一年的操作日志,在合成工作负载下评估了Data Jockey的原型实现。我们的评估表明,与人工参与的、每个域的临时数据管理脚本相比,Data Jockey提高了上层存储层的利用率,同时最大限度地减少了数据移动的编程工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Data Jockey: Automatic Data Management for HPC Multi-tiered Storage Systems
We present the design and implementation of Data Jockey, a data management system for HPC multi-tiered storage systems. As a centralized data management control plane, Data Jockey automates bulk data movement and placement for scientific workflows and integrates into existing HPC storage infrastructures. Data Jockey simplifies data management by eliminating human effort in programming complex data movements, laying datasets across multiple storage tiers when supporting complex workflows, which in turn increases the usability of multi-tiered storage systems emerging in modern HPC data centers. Specifically, Data Jockey presents a new data management scheme called "goal driven data management" that can automatically infer low-level bulk data movement plans from declarative high-level goal statements that come from the lifetime of iterative runs of scientific workflows. While doing so, Data Jockey aims to minimize data wait times by taking responsibility for datasets that are unused or to be used, and aggressively utilizing the capacity of the upper, higher performant storage tiers. We evaluated a prototype implementation of Data Jockey under a synthetic workload based on a year's worth of Oak Ridge Leadership Computing Facility's (OLCF) operational logs. Our evaluations suggest that Data Jockey leads to higher utilization of the upper storage tiers while minimizing the programming effort of data movement compared to human involved, per-domain ad-hoc data management scripts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信