{"title":"前调节剂时代囊性纤维化黏液异质性的观察和见解:痰特征、DNA和糖蛋白含量以及溶解时间","authors":"D. Chance, T. Mawhinney","doi":"10.3390/jor1010002","DOIUrl":null,"url":null,"abstract":"Airway obstruction with chronic inflammation and infection are major contributors to the lung damage and mortality of cystic fibrosis (CF). A better understanding of the congested milieu of CF airways will aid in improving therapeutic strategies. This article retrospectively reports our observations, and discusses insights gained in the handling and analysis of CF sputa. CF and non-CF mucus samples were surveyed for morphological features by electron microscopy and analyzed for the macromolecular dry weight (MDW), total protein, lipid, carbohydrate, and DNA. Mucus character was investigated with chemical solubilization time as a comparative tool. CF mucus appeared distinctly thick, viscous, and heterogeneous, with neutrophils as the dominant immune cell. CF sputum DNA content varied markedly for and between individuals (~1–10% MDW), as did solubilization times (~1–20 h). CF Sputum DNA up to 7.1% MDW correlated positively with solubilization time, whereas DNA >7.1% MDW correlated negatively. 3D analysis of CF sputa DNA, GP, and solubilization times revealed a dynamic and predictive relationship. Reflecting on the heterogeneous content and character of CF mucus, and the possible interplay in space and time in the respiratory tract of polymeric DNA and mucous glycoproteins, we highlight it’s potential to affect infection-related airway pathologies and the success of therapeutic interventions.","PeriodicalId":284235,"journal":{"name":"Journal of Respiration","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Observations of, and Insights into, Cystic Fibrosis Mucus Heterogeneity in the Pre-Modulator Era: Sputum Characteristics, DNA and Glycoprotein Content, and Solubilization Time\",\"authors\":\"D. Chance, T. Mawhinney\",\"doi\":\"10.3390/jor1010002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Airway obstruction with chronic inflammation and infection are major contributors to the lung damage and mortality of cystic fibrosis (CF). A better understanding of the congested milieu of CF airways will aid in improving therapeutic strategies. This article retrospectively reports our observations, and discusses insights gained in the handling and analysis of CF sputa. CF and non-CF mucus samples were surveyed for morphological features by electron microscopy and analyzed for the macromolecular dry weight (MDW), total protein, lipid, carbohydrate, and DNA. Mucus character was investigated with chemical solubilization time as a comparative tool. CF mucus appeared distinctly thick, viscous, and heterogeneous, with neutrophils as the dominant immune cell. CF sputum DNA content varied markedly for and between individuals (~1–10% MDW), as did solubilization times (~1–20 h). CF Sputum DNA up to 7.1% MDW correlated positively with solubilization time, whereas DNA >7.1% MDW correlated negatively. 3D analysis of CF sputa DNA, GP, and solubilization times revealed a dynamic and predictive relationship. Reflecting on the heterogeneous content and character of CF mucus, and the possible interplay in space and time in the respiratory tract of polymeric DNA and mucous glycoproteins, we highlight it’s potential to affect infection-related airway pathologies and the success of therapeutic interventions.\",\"PeriodicalId\":284235,\"journal\":{\"name\":\"Journal of Respiration\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Respiration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jor1010002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Respiration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jor1010002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Observations of, and Insights into, Cystic Fibrosis Mucus Heterogeneity in the Pre-Modulator Era: Sputum Characteristics, DNA and Glycoprotein Content, and Solubilization Time
Airway obstruction with chronic inflammation and infection are major contributors to the lung damage and mortality of cystic fibrosis (CF). A better understanding of the congested milieu of CF airways will aid in improving therapeutic strategies. This article retrospectively reports our observations, and discusses insights gained in the handling and analysis of CF sputa. CF and non-CF mucus samples were surveyed for morphological features by electron microscopy and analyzed for the macromolecular dry weight (MDW), total protein, lipid, carbohydrate, and DNA. Mucus character was investigated with chemical solubilization time as a comparative tool. CF mucus appeared distinctly thick, viscous, and heterogeneous, with neutrophils as the dominant immune cell. CF sputum DNA content varied markedly for and between individuals (~1–10% MDW), as did solubilization times (~1–20 h). CF Sputum DNA up to 7.1% MDW correlated positively with solubilization time, whereas DNA >7.1% MDW correlated negatively. 3D analysis of CF sputa DNA, GP, and solubilization times revealed a dynamic and predictive relationship. Reflecting on the heterogeneous content and character of CF mucus, and the possible interplay in space and time in the respiratory tract of polymeric DNA and mucous glycoproteins, we highlight it’s potential to affect infection-related airway pathologies and the success of therapeutic interventions.