性能函数(粒子加速器)

T. O'connor, L. Grisham, J. Kamperschroer, G. Rossi, T. Stevenson, A. von Halle, M. Williams
{"title":"性能函数(粒子加速器)","authors":"T. O'connor, L. Grisham, J. Kamperschroer, G. Rossi, T. Stevenson, A. von Halle, M. Williams","doi":"10.1109/FUSION.1991.218722","DOIUrl":null,"url":null,"abstract":"A method of analyzing the divergence characteristics of particle beams that utilize a Pierce geometry accelerator is described. The technique combines measurements of gradient grid current and arc current to develop an analytic expression, (perveance function), that could prove beneficial to beam operations. Unlike thermocouple or Doppler measurements of beam divergence, which only indicate the magnitude of the beam angle, the perveance function exhibits bipolar linearity with arc current changes. Additionally, the value of the arc current at which the perveance function equals zero is the operating point for minimum beam divergence. As a result, a single measurement with the perveance function can indicate whether the beam is overfocused or underfocused, and also determine the change in the magnitude and direction of the operating point to achieve optimum focus. This method is superior to present procedures, which tune the source by hunting for the minimum divergence. The perveance function is a relatively simple relationship that can be easily realized in hardware electronics or computer software.<<ETX>>","PeriodicalId":318951,"journal":{"name":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The perveance function (particle accelerators)\",\"authors\":\"T. O'connor, L. Grisham, J. Kamperschroer, G. Rossi, T. Stevenson, A. von Halle, M. Williams\",\"doi\":\"10.1109/FUSION.1991.218722\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A method of analyzing the divergence characteristics of particle beams that utilize a Pierce geometry accelerator is described. The technique combines measurements of gradient grid current and arc current to develop an analytic expression, (perveance function), that could prove beneficial to beam operations. Unlike thermocouple or Doppler measurements of beam divergence, which only indicate the magnitude of the beam angle, the perveance function exhibits bipolar linearity with arc current changes. Additionally, the value of the arc current at which the perveance function equals zero is the operating point for minimum beam divergence. As a result, a single measurement with the perveance function can indicate whether the beam is overfocused or underfocused, and also determine the change in the magnitude and direction of the operating point to achieve optimum focus. This method is superior to present procedures, which tune the source by hunting for the minimum divergence. The perveance function is a relatively simple relationship that can be easily realized in hardware electronics or computer software.<<ETX>>\",\"PeriodicalId\":318951,\"journal\":{\"name\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1991-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUSION.1991.218722\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"[Proceedings] The 14th IEEE/NPSS Symposium Fusion Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUSION.1991.218722","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种利用皮尔斯几何加速器分析粒子束发散特性的方法。该技术将梯度栅极电流和电弧电流的测量结合起来,形成一个解析表达式(性能函数),这可能对束流操作有益。与热电偶或多普勒测量的光束发散度不同,它们只表明光束角的大小,性能函数随电弧电流的变化呈现双极线性。另外,性能函数为零时的弧电流值为最小光束散度的工作点。因此,具有性能函数的单次测量可以指示光束是过聚焦还是欠聚焦,还可以确定工作点的大小和方向的变化,以达到最佳聚焦。这种方法优于现有的通过寻找最小散度来调整源的方法。性能函数是一个相对简单的关系,可以很容易地在硬件、电子或计算机软件中实现
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The perveance function (particle accelerators)
A method of analyzing the divergence characteristics of particle beams that utilize a Pierce geometry accelerator is described. The technique combines measurements of gradient grid current and arc current to develop an analytic expression, (perveance function), that could prove beneficial to beam operations. Unlike thermocouple or Doppler measurements of beam divergence, which only indicate the magnitude of the beam angle, the perveance function exhibits bipolar linearity with arc current changes. Additionally, the value of the arc current at which the perveance function equals zero is the operating point for minimum beam divergence. As a result, a single measurement with the perveance function can indicate whether the beam is overfocused or underfocused, and also determine the change in the magnitude and direction of the operating point to achieve optimum focus. This method is superior to present procedures, which tune the source by hunting for the minimum divergence. The perveance function is a relatively simple relationship that can be easily realized in hardware electronics or computer software.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信