M. Amos, R. Middleton, Alexander Biddulph, Alexandre Mendes
{"title":"双足机器人运动动态稳定性的实现与分析","authors":"M. Amos, R. Middleton, Alexander Biddulph, Alexandre Mendes","doi":"10.1109/SSCI47803.2020.9308374","DOIUrl":null,"url":null,"abstract":"This work presents the design and simulation of a stable balance and locomotion approach for a bipedal robot. The torque response of a falling body is modelled and a low-pass filter was designed and implemented for the angular position of actuators within the robot’s legs. A torque control method is also described, akin to using proportional and derivative control of the angular position of the actuators. Finally, a Zero Moment Point based capture step is described and implemented within simulation. With torque control alone, the result is a stable bipedal recovery from disturbances along the saggital plane of up to 11.25N of force, from a standing pose. In comparison, the previous implementation without dynamic stability leads to the robot falling after a minor disturbance of 2N. When capture step is included in the approach, the robot can recover from disturbances of up to 45N. The codebase is open-source and provides a humanoid robot simulation platform for research teams working in this area.","PeriodicalId":413489,"journal":{"name":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implementation and analysis of dynamic stability for bipedal robotic motion\",\"authors\":\"M. Amos, R. Middleton, Alexander Biddulph, Alexandre Mendes\",\"doi\":\"10.1109/SSCI47803.2020.9308374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work presents the design and simulation of a stable balance and locomotion approach for a bipedal robot. The torque response of a falling body is modelled and a low-pass filter was designed and implemented for the angular position of actuators within the robot’s legs. A torque control method is also described, akin to using proportional and derivative control of the angular position of the actuators. Finally, a Zero Moment Point based capture step is described and implemented within simulation. With torque control alone, the result is a stable bipedal recovery from disturbances along the saggital plane of up to 11.25N of force, from a standing pose. In comparison, the previous implementation without dynamic stability leads to the robot falling after a minor disturbance of 2N. When capture step is included in the approach, the robot can recover from disturbances of up to 45N. The codebase is open-source and provides a humanoid robot simulation platform for research teams working in this area.\",\"PeriodicalId\":413489,\"journal\":{\"name\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Symposium Series on Computational Intelligence (SSCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSCI47803.2020.9308374\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI47803.2020.9308374","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementation and analysis of dynamic stability for bipedal robotic motion
This work presents the design and simulation of a stable balance and locomotion approach for a bipedal robot. The torque response of a falling body is modelled and a low-pass filter was designed and implemented for the angular position of actuators within the robot’s legs. A torque control method is also described, akin to using proportional and derivative control of the angular position of the actuators. Finally, a Zero Moment Point based capture step is described and implemented within simulation. With torque control alone, the result is a stable bipedal recovery from disturbances along the saggital plane of up to 11.25N of force, from a standing pose. In comparison, the previous implementation without dynamic stability leads to the robot falling after a minor disturbance of 2N. When capture step is included in the approach, the robot can recover from disturbances of up to 45N. The codebase is open-source and provides a humanoid robot simulation platform for research teams working in this area.