Filippo Bistaffa, Alessandro Filippo, G. Chalkiadakis, S. Ramchurn
{"title":"建议公平支付大规模社会拼车","authors":"Filippo Bistaffa, Alessandro Filippo, G. Chalkiadakis, S. Ramchurn","doi":"10.1145/2792838.2800177","DOIUrl":null,"url":null,"abstract":"We perform recommendations for the Social Ridesharing scenario, in which a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on how much one should pay for taking a ride with friends. More formally, we propose the first approach that can compute fair coalitional payments that are also stable according to the game-theoretic concept of the kernel for systems with thousands of agents in real-world scenarios. Our tests, based on real datasets for both spatial (GeoLife) and social data (Twitter), show that our approach is significantly faster than the state-of-the-art (up to 84 times), allowing us to compute stable payments for 2000 agents in 50 minutes. We also develop a parallel version of our approach, which achieves a near-optimal speed-up in the number of processors used. Finally, our empirical analysis reveals new insights into the relationship between payments incurred by a user by virtue of its position in its social network and its role (rider or driver).","PeriodicalId":325637,"journal":{"name":"Proceedings of the 9th ACM Conference on Recommender Systems","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Recommending Fair Payments for Large-Scale Social Ridesharing\",\"authors\":\"Filippo Bistaffa, Alessandro Filippo, G. Chalkiadakis, S. Ramchurn\",\"doi\":\"10.1145/2792838.2800177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We perform recommendations for the Social Ridesharing scenario, in which a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on how much one should pay for taking a ride with friends. More formally, we propose the first approach that can compute fair coalitional payments that are also stable according to the game-theoretic concept of the kernel for systems with thousands of agents in real-world scenarios. Our tests, based on real datasets for both spatial (GeoLife) and social data (Twitter), show that our approach is significantly faster than the state-of-the-art (up to 84 times), allowing us to compute stable payments for 2000 agents in 50 minutes. We also develop a parallel version of our approach, which achieves a near-optimal speed-up in the number of processors used. Finally, our empirical analysis reveals new insights into the relationship between payments incurred by a user by virtue of its position in its social network and its role (rider or driver).\",\"PeriodicalId\":325637,\"journal\":{\"name\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"volume\":\"34 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th ACM Conference on Recommender Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2792838.2800177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th ACM Conference on Recommender Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2792838.2800177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Recommending Fair Payments for Large-Scale Social Ridesharing
We perform recommendations for the Social Ridesharing scenario, in which a set of commuters, connected through a social network, arrange one-time rides at short notice. In particular, we focus on how much one should pay for taking a ride with friends. More formally, we propose the first approach that can compute fair coalitional payments that are also stable according to the game-theoretic concept of the kernel for systems with thousands of agents in real-world scenarios. Our tests, based on real datasets for both spatial (GeoLife) and social data (Twitter), show that our approach is significantly faster than the state-of-the-art (up to 84 times), allowing us to compute stable payments for 2000 agents in 50 minutes. We also develop a parallel version of our approach, which achieves a near-optimal speed-up in the number of processors used. Finally, our empirical analysis reveals new insights into the relationship between payments incurred by a user by virtue of its position in its social network and its role (rider or driver).