应用于医学断层扫描图像的嵌入子空间聚类查找新方法

Amel Boulemnadjel, F. Hachouf
{"title":"应用于医学断层扫描图像的嵌入子空间聚类查找新方法","authors":"Amel Boulemnadjel, F. Hachouf","doi":"10.1109/IPTA.2012.6469519","DOIUrl":null,"url":null,"abstract":"In this paper a new subspaces clustering algorithm is proposed. This method has two levels, the first one is an iterative algorithm based on the minimization of an objective function. The density is introduced in this objective function where the distances between points become relatively uniform in high dimensional spaces. In such cases, the density of cluster may give better results. The idea of the second level is to find the clusters in each subspace individually. We applied the proposed method to medical tomography scan image without Intravenous or IV contrast dye. Then we compare the results with the same image with IV contrast. However in some cases, there are risks associated with this injection, where the mortality risk is low but not null. This method can reduce the use of this injection. Experimental results on synthetic and real datasets show that the proposed method gives good results in medical tomography image.","PeriodicalId":267290,"journal":{"name":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A new method for finding clusters embedded in subspaces applied to medical tomography scan image\",\"authors\":\"Amel Boulemnadjel, F. Hachouf\",\"doi\":\"10.1109/IPTA.2012.6469519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a new subspaces clustering algorithm is proposed. This method has two levels, the first one is an iterative algorithm based on the minimization of an objective function. The density is introduced in this objective function where the distances between points become relatively uniform in high dimensional spaces. In such cases, the density of cluster may give better results. The idea of the second level is to find the clusters in each subspace individually. We applied the proposed method to medical tomography scan image without Intravenous or IV contrast dye. Then we compare the results with the same image with IV contrast. However in some cases, there are risks associated with this injection, where the mortality risk is low but not null. This method can reduce the use of this injection. Experimental results on synthetic and real datasets show that the proposed method gives good results in medical tomography image.\",\"PeriodicalId\":267290,\"journal\":{\"name\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPTA.2012.6469519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 3rd International Conference on Image Processing Theory, Tools and Applications (IPTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPTA.2012.6469519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种新的子空间聚类算法。该方法有两个层次,第一级是基于目标函数最小化的迭代算法。在这个目标函数中引入了密度,其中点之间的距离在高维空间中变得相对均匀。在这种情况下,簇的密度可能会得到更好的结果。第二层的思想是在每个子空间中分别找到聚类。我们将所提出的方法应用于没有静脉注射或静脉注射造影剂的医学断层扫描图像。然后我们将结果与静脉对比的相同图像进行比较。然而,在某些情况下,与这种注射有关的风险很低,但并非没有死亡风险。这种方法可以减少注射剂的使用。在合成数据集和真实数据集上的实验结果表明,该方法对医学断层成像具有较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for finding clusters embedded in subspaces applied to medical tomography scan image
In this paper a new subspaces clustering algorithm is proposed. This method has two levels, the first one is an iterative algorithm based on the minimization of an objective function. The density is introduced in this objective function where the distances between points become relatively uniform in high dimensional spaces. In such cases, the density of cluster may give better results. The idea of the second level is to find the clusters in each subspace individually. We applied the proposed method to medical tomography scan image without Intravenous or IV contrast dye. Then we compare the results with the same image with IV contrast. However in some cases, there are risks associated with this injection, where the mortality risk is low but not null. This method can reduce the use of this injection. Experimental results on synthetic and real datasets show that the proposed method gives good results in medical tomography image.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信