实用策略迭代:利用蒙特卡罗模拟获得bermuda奇异导数快速紧界的一般方法

Christopher Beveridge, M. Joshi, Rober Y. W. Tang
{"title":"实用策略迭代:利用蒙特卡罗模拟获得bermuda奇异导数快速紧界的一般方法","authors":"Christopher Beveridge, M. Joshi, Rober Y. W. Tang","doi":"10.2139/ssrn.1331904","DOIUrl":null,"url":null,"abstract":"We introduce a set of improvements which allow the calculation of very tight lower bounds for Bermudan derivatives using Monte Carlo simulation. These tight lower bounds can be computed quickly, and with minimal hand-crafting. Our focus is on accelerating policy iteration to the point where it can be used in similar computation times to the basic least-squares approach, but in doing so introduce a number of improvements which can be applied to both the least-squares approach and the calculation of upper bounds using the Andersen–Broadie method. The enhancements to the least-squares method improve both accuracy and efficiency.","PeriodicalId":364869,"journal":{"name":"ERN: Simulation Methods (Topic)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"Practical Policy Iteration: Generic Methods for Obtaining Rapid and Tight Bounds for Bermudan Exotic Derivatives Using Monte Carlo Simulation\",\"authors\":\"Christopher Beveridge, M. Joshi, Rober Y. W. Tang\",\"doi\":\"10.2139/ssrn.1331904\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce a set of improvements which allow the calculation of very tight lower bounds for Bermudan derivatives using Monte Carlo simulation. These tight lower bounds can be computed quickly, and with minimal hand-crafting. Our focus is on accelerating policy iteration to the point where it can be used in similar computation times to the basic least-squares approach, but in doing so introduce a number of improvements which can be applied to both the least-squares approach and the calculation of upper bounds using the Andersen–Broadie method. The enhancements to the least-squares method improve both accuracy and efficiency.\",\"PeriodicalId\":364869,\"journal\":{\"name\":\"ERN: Simulation Methods (Topic)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Simulation Methods (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.1331904\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Simulation Methods (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1331904","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

摘要

我们引入了一组改进,允许使用蒙特卡罗模拟计算百慕大导数的非常严格的下界。这些严格的下限可以快速计算出来,并且只需最少的手工制作。我们的重点是加速策略迭代,使其可以在与基本最小二乘方法相似的计算时间内使用,但这样做会引入一些改进,这些改进可以应用于最小二乘方法和使用andersen - broaddie方法计算上界。对最小二乘法的改进提高了精度和效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Practical Policy Iteration: Generic Methods for Obtaining Rapid and Tight Bounds for Bermudan Exotic Derivatives Using Monte Carlo Simulation
We introduce a set of improvements which allow the calculation of very tight lower bounds for Bermudan derivatives using Monte Carlo simulation. These tight lower bounds can be computed quickly, and with minimal hand-crafting. Our focus is on accelerating policy iteration to the point where it can be used in similar computation times to the basic least-squares approach, but in doing so introduce a number of improvements which can be applied to both the least-squares approach and the calculation of upper bounds using the Andersen–Broadie method. The enhancements to the least-squares method improve both accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信