基于协调pi的孤立混合微电网频率偏差控制:一种基于强化学习的在线多智能体调谐方法

K. Nosrati, A. Tepljakov, E. Petlenkov, Y. Levron, V. Skiparev, J. Belikov
{"title":"基于协调pi的孤立混合微电网频率偏差控制:一种基于强化学习的在线多智能体调谐方法","authors":"K. Nosrati, A. Tepljakov, E. Petlenkov, Y. Levron, V. Skiparev, J. Belikov","doi":"10.1109/ISGT-Europe54678.2022.9960311","DOIUrl":null,"url":null,"abstract":"Numerous remote area applications welcome standalone renewable energy power generation systems or isolated microgrids (MGs). Due to the nature of solar and wind energy, the frequency deviation control (FDC) in hybrid MGs has become more complicated and critical than the conventional grid for power quality purposes. By using a coordination control strategy between a double-layered capacitor and a fuel cell, our mission here is to design a FDC system based on the PI controller which is tuned by an artificial neural network (ANN) in a multi-agent structure. To achieve this aim, a reinforcement learning technique is applied to train the ANN-based tuners. The performance of the proposed FDC system has been verified under different conditions by using real data to demonstrate the stability and robustness of the proposed controller.","PeriodicalId":311595,"journal":{"name":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Coordinated PI-based frequency deviation control of isolated hybrid microgrid: An online multi-agent tuning approach via reinforcement learning\",\"authors\":\"K. Nosrati, A. Tepljakov, E. Petlenkov, Y. Levron, V. Skiparev, J. Belikov\",\"doi\":\"10.1109/ISGT-Europe54678.2022.9960311\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Numerous remote area applications welcome standalone renewable energy power generation systems or isolated microgrids (MGs). Due to the nature of solar and wind energy, the frequency deviation control (FDC) in hybrid MGs has become more complicated and critical than the conventional grid for power quality purposes. By using a coordination control strategy between a double-layered capacitor and a fuel cell, our mission here is to design a FDC system based on the PI controller which is tuned by an artificial neural network (ANN) in a multi-agent structure. To achieve this aim, a reinforcement learning technique is applied to train the ANN-based tuners. The performance of the proposed FDC system has been verified under different conditions by using real data to demonstrate the stability and robustness of the proposed controller.\",\"PeriodicalId\":311595,\"journal\":{\"name\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISGT-Europe54678.2022.9960311\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISGT-Europe54678.2022.9960311","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

许多偏远地区的应用欢迎独立的可再生能源发电系统或孤立的微电网(mg)。由于太阳能和风能的特性,与传统电网相比,混合电网中的频率偏差控制(FDC)变得更加复杂和关键。利用双层电容器与燃料电池之间的协调控制策略,设计了一个基于PI控制器的多智能体结构的FDC系统,该控制器由人工神经网络(ANN)进行调谐。为了实现这一目标,采用强化学习技术来训练基于人工神经网络的调谐器。用实际数据验证了所提FDC系统在不同条件下的性能,证明了所提控制器的稳定性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coordinated PI-based frequency deviation control of isolated hybrid microgrid: An online multi-agent tuning approach via reinforcement learning
Numerous remote area applications welcome standalone renewable energy power generation systems or isolated microgrids (MGs). Due to the nature of solar and wind energy, the frequency deviation control (FDC) in hybrid MGs has become more complicated and critical than the conventional grid for power quality purposes. By using a coordination control strategy between a double-layered capacitor and a fuel cell, our mission here is to design a FDC system based on the PI controller which is tuned by an artificial neural network (ANN) in a multi-agent structure. To achieve this aim, a reinforcement learning technique is applied to train the ANN-based tuners. The performance of the proposed FDC system has been verified under different conditions by using real data to demonstrate the stability and robustness of the proposed controller.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信