J. Villegas, Carlos Cobos, Martha Mendoza, E. Herrera-Viedma
{"title":"使用替换采样、覆盖阵列和规则归纳技术的特征选择来辅助Twitter情感分析中的极性检测","authors":"J. Villegas, Carlos Cobos, Martha Mendoza, E. Herrera-Viedma","doi":"10.1007/978-3-030-03928-8_38","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":353705,"journal":{"name":"Ibero-American Conference on AI","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Feature Selection Using Sampling with Replacement, Covering Arrays and Rule-Induction Techniques to Aid Polarity Detection in Twitter Sentiment Analysis\",\"authors\":\"J. Villegas, Carlos Cobos, Martha Mendoza, E. Herrera-Viedma\",\"doi\":\"10.1007/978-3-030-03928-8_38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":353705,\"journal\":{\"name\":\"Ibero-American Conference on AI\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ibero-American Conference on AI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-030-03928-8_38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ibero-American Conference on AI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-030-03928-8_38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Feature Selection Using Sampling with Replacement, Covering Arrays and Rule-Induction Techniques to Aid Polarity Detection in Twitter Sentiment Analysis