Soedibyo, Sjamsjul Anam, I. Hafidz, Gusti Rinaldi Zulkarnain, M. Ashari
{"title":"考虑倾斜角度和部分遮阳的扰动观测技术在吉利丁岛太阳能发电场的MPPT设计","authors":"Soedibyo, Sjamsjul Anam, I. Hafidz, Gusti Rinaldi Zulkarnain, M. Ashari","doi":"10.1109/ISITIA.2017.8124084","DOIUrl":null,"url":null,"abstract":"Giligenting Island is located in Sumenep, Madura. It is very potential for application the renewable energy. Based on the measurement, the maximum potential irradiance solar farm in the Island is accounted 610 W/m2. To convert the irradiance power to electricity, photovoltaic is applied. However, photovoltaic modules are drastically decrease their power output in case of the partial shading conditions. Therefore, perturb and obverse method (PnO) is introduced to track the point to establish the maximum power. In addition, the maximum power point tracking (MPPT) is employed to reduce the shading effects, thus by both method, the power generated is maximum. Besides, this technique is able to overcome the limitations in tracking efficiency, oscillation in steady state, and transient period. In this paper to maximize the irradiance observation, optimal site selection is undertaken by considering the tilt angles of PV and by approaching a sun path diagram model. Based on this study and experiment that have been taken in Giligenting Island, it is summed up that the proposed MPPT algorithm is superior to P&O technique with varies partial shading conditions. The results of the simulation yield that the power output of photovoltaic cover 99.4% of the load demand in Giligenting Island.","PeriodicalId":308504,"journal":{"name":"2017 International Seminar on Intelligent Technology and Its Applications (ISITIA)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"MPPT design on solar farm using perturb and observe technique considering tilt angle and partial shading in Giligenting Island\",\"authors\":\"Soedibyo, Sjamsjul Anam, I. Hafidz, Gusti Rinaldi Zulkarnain, M. Ashari\",\"doi\":\"10.1109/ISITIA.2017.8124084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Giligenting Island is located in Sumenep, Madura. It is very potential for application the renewable energy. Based on the measurement, the maximum potential irradiance solar farm in the Island is accounted 610 W/m2. To convert the irradiance power to electricity, photovoltaic is applied. However, photovoltaic modules are drastically decrease their power output in case of the partial shading conditions. Therefore, perturb and obverse method (PnO) is introduced to track the point to establish the maximum power. In addition, the maximum power point tracking (MPPT) is employed to reduce the shading effects, thus by both method, the power generated is maximum. Besides, this technique is able to overcome the limitations in tracking efficiency, oscillation in steady state, and transient period. In this paper to maximize the irradiance observation, optimal site selection is undertaken by considering the tilt angles of PV and by approaching a sun path diagram model. Based on this study and experiment that have been taken in Giligenting Island, it is summed up that the proposed MPPT algorithm is superior to P&O technique with varies partial shading conditions. The results of the simulation yield that the power output of photovoltaic cover 99.4% of the load demand in Giligenting Island.\",\"PeriodicalId\":308504,\"journal\":{\"name\":\"2017 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Seminar on Intelligent Technology and Its Applications (ISITIA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISITIA.2017.8124084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Seminar on Intelligent Technology and Its Applications (ISITIA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISITIA.2017.8124084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MPPT design on solar farm using perturb and observe technique considering tilt angle and partial shading in Giligenting Island
Giligenting Island is located in Sumenep, Madura. It is very potential for application the renewable energy. Based on the measurement, the maximum potential irradiance solar farm in the Island is accounted 610 W/m2. To convert the irradiance power to electricity, photovoltaic is applied. However, photovoltaic modules are drastically decrease their power output in case of the partial shading conditions. Therefore, perturb and obverse method (PnO) is introduced to track the point to establish the maximum power. In addition, the maximum power point tracking (MPPT) is employed to reduce the shading effects, thus by both method, the power generated is maximum. Besides, this technique is able to overcome the limitations in tracking efficiency, oscillation in steady state, and transient period. In this paper to maximize the irradiance observation, optimal site selection is undertaken by considering the tilt angles of PV and by approaching a sun path diagram model. Based on this study and experiment that have been taken in Giligenting Island, it is summed up that the proposed MPPT algorithm is superior to P&O technique with varies partial shading conditions. The results of the simulation yield that the power output of photovoltaic cover 99.4% of the load demand in Giligenting Island.