离散事件仿真中的Kriging元建模:概述

W. V. Beers
{"title":"离散事件仿真中的Kriging元建模:概述","authors":"W. V. Beers","doi":"10.1109/WSC.2005.1574252","DOIUrl":null,"url":null,"abstract":"Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.","PeriodicalId":287132,"journal":{"name":"Online World Conference on Soft Computing in Industrial Applications","volume":"599 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Kriging metamodeling in discrete-event simulation: an overview\",\"authors\":\"W. V. Beers\",\"doi\":\"10.1109/WSC.2005.1574252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.\",\"PeriodicalId\":287132,\"journal\":{\"name\":\"Online World Conference on Soft Computing in Industrial Applications\",\"volume\":\"599 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Online World Conference on Soft Computing in Industrial Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC.2005.1574252\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Online World Conference on Soft Computing in Industrial Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC.2005.1574252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

许多仿真实验需要大量的计算机时间,因此需要插值进行灵敏度分析和优化。插值函数是底层仿真模型的“元模型”(或“响应面”)。对于灵敏度分析和优化,仿真者使用不同的插值技术(例如低阶多项式回归或神经网络)。然而,本文的重点是Kriging插值。在20世纪50年代,d.g.克里格为采矿业开发了这种技术。目前,克里格插值在计算机辅助工程中得到了广泛的应用。然而,在离散事件模拟领域,克里格才刚刚起步。本文讨论了克里格法在仿真灵敏度分析中的应用,包括克里格插值实验设计的选择方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kriging metamodeling in discrete-event simulation: an overview
Many simulation experiments require considerable computer time, so interpolation is needed for sensitivity analysis and optimization. The interpolating functions are 'metamodels' (or 'response surfaces') of the underlying simulation models. For sensitivity analysis and optimization, simulationists use different interpolation techniques (e.g. low-order polynomial regression or neural nets). This paper, however, focuses on Kriging interpolation. In the 1950's, D. G. Krige developed this technique for the mining industry. Currently, Kriging interpolation is frequently applied in Computer Aided Engineering. In discrete-event simulation, however, Kriging has just started. This paper discusses Kriging for sensitivity analysis in simulation, including methods to select an experimental design for Kriging interpolation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信