最大化梯度函数的有效神经网络训练

S. U. Ahmed, M. Shahjahan, K. Murase
{"title":"最大化梯度函数的有效神经网络训练","authors":"S. U. Ahmed, M. Shahjahan, K. Murase","doi":"10.1109/ICCITECHN.2010.5723895","DOIUrl":null,"url":null,"abstract":"In this paper, a faster supervised algorithm (BPfast) for the neural network training is proposed that maximizes the derivative of sigmoid activation function during back-propagation (BP) training. BP adjusts the weights of neural network with minimizing an error function. Due to the presence of derivative information in the weight update rule, BP goes to ‘premature saturation’ that slows down the training convergence. In the saturation region, the derivative information tends to zero. To overcome the problem, BPfast maximizes the derivative of activation function together with minimizing the error function. BPfast is tested on five real world benchmark problems such as breast cancer, diabetes, heart disease, Australian credit card, and horse. BPfast exhibits faster convergence and good generalization ability over standard BP algorithm.","PeriodicalId":149135,"journal":{"name":"2010 13th International Conference on Computer and Information Technology (ICCIT)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Maximization of the gradient function for efficient neural network training\",\"authors\":\"S. U. Ahmed, M. Shahjahan, K. Murase\",\"doi\":\"10.1109/ICCITECHN.2010.5723895\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a faster supervised algorithm (BPfast) for the neural network training is proposed that maximizes the derivative of sigmoid activation function during back-propagation (BP) training. BP adjusts the weights of neural network with minimizing an error function. Due to the presence of derivative information in the weight update rule, BP goes to ‘premature saturation’ that slows down the training convergence. In the saturation region, the derivative information tends to zero. To overcome the problem, BPfast maximizes the derivative of activation function together with minimizing the error function. BPfast is tested on five real world benchmark problems such as breast cancer, diabetes, heart disease, Australian credit card, and horse. BPfast exhibits faster convergence and good generalization ability over standard BP algorithm.\",\"PeriodicalId\":149135,\"journal\":{\"name\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"volume\":\"103 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 13th International Conference on Computer and Information Technology (ICCIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCITECHN.2010.5723895\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 13th International Conference on Computer and Information Technology (ICCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCITECHN.2010.5723895","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文提出了一种更快的神经网络训练监督算法(BPfast),该算法在反向传播(BP)训练过程中最大化s型激活函数的导数。BP以最小化误差函数来调整神经网络的权值。由于权重更新规则中导数信息的存在,BP会进入“过早饱和”状态,从而减慢训练收敛速度。在饱和区域,导数信息趋于零。为了克服这个问题,BPfast在最小化误差函数的同时最大化激活函数的导数。BPfast在五个现实世界的基准问题上进行了测试,如乳腺癌、糖尿病、心脏病、澳大利亚信用卡和马。与标准BP算法相比,BPfast具有更快的收敛速度和良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Maximization of the gradient function for efficient neural network training
In this paper, a faster supervised algorithm (BPfast) for the neural network training is proposed that maximizes the derivative of sigmoid activation function during back-propagation (BP) training. BP adjusts the weights of neural network with minimizing an error function. Due to the presence of derivative information in the weight update rule, BP goes to ‘premature saturation’ that slows down the training convergence. In the saturation region, the derivative information tends to zero. To overcome the problem, BPfast maximizes the derivative of activation function together with minimizing the error function. BPfast is tested on five real world benchmark problems such as breast cancer, diabetes, heart disease, Australian credit card, and horse. BPfast exhibits faster convergence and good generalization ability over standard BP algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信